Reliability assessments of concrete structures based on Nonlinear Finite Element Analyses: how to codify design methods?

Reporting from action group 8 contributing to the *fib* Model Code 2020

Introduction in the second second

Max Hendriks – TU Delft, Netherlands & NTNU, Norway TNO Workshop *Computational challenges in the reliability assessment of engineering structures*, 24 January 2018, Delft

In this presentation

• Introducing the *fib* and the Model Code

Issues

Way forward

What is the fib Model code 2020?

- Short name: *fib* MC2020
- Update of the *fib* MC2010 with added data on "existing concrete structures"
- Will serve as a basis for future codes for concrete structures
- For national and international code committees, practitioners and researchers

fib Action Groups

 Focussing on a specific topic/section with in the MC2020

 Action group «AG8»: focussing on section «7.11 Verifications assisted by <u>numerical simulations</u>»

fib Action Group AG8

> 20 members

- A "core team"
 - Giorgio Monti (co-convenor)
 - Diego Allaix
 - Morten Engen (technical secretary)
 - Max Hendriks (convenor)

fib AG8 Current status of the work

- Wishes for the MC2020 text of 7.11 have been investigated.
- Working on specifications for the text.


- Defined as the ratio of <u>observed load</u> resistance and finite element predictions of the load resistance.
- That is, the main application field is estimating the load resistance of a concrete structure.

- 1. There is not one nonlinear finite element approach. Many approaches exist with different choices for the
 - Kinematic equations
 - Constitutive equations
 - Equilibrium methods & conditions

2. Very often the approaches have not documented explicitly

3. Some finite element models are like "virtual experiments" and simulate failure. Others model "only" the force redistributions and use a "simple" failure criterion.

- 4. The application field of the models is wide.
- 5. The model uncertainty depends on the type of failure mode. That is, it depends on the "brittleness" of the failure.

M. Engen et al. / Structural Safety 64 (2017) 1-8

Introduction in the second second

 Table 2-2: Statistical properties of the modelling uncertainty per failure mode

Failure mode	Mean	CoV
Bending	0.97	0.04
Flexural shear in beams	1.01	0.08
Shear in slabs	1.39	0.10
All	1.15	0.19

Rijkswaterstaat technisch document 1016-2:2017, 2017

 Mainly based on lab experiments which are always idealizations of actual structures

7. Hard to unravel from other (material) uncertainties

 Sometimes based on "between-model uncertainty" with 1 experimental outcome and multiple model approaches:

$$\theta_{1,i} = \frac{R_{\exp}}{R_{\text{NLFEA},i}}$$

NTNUTUDelft

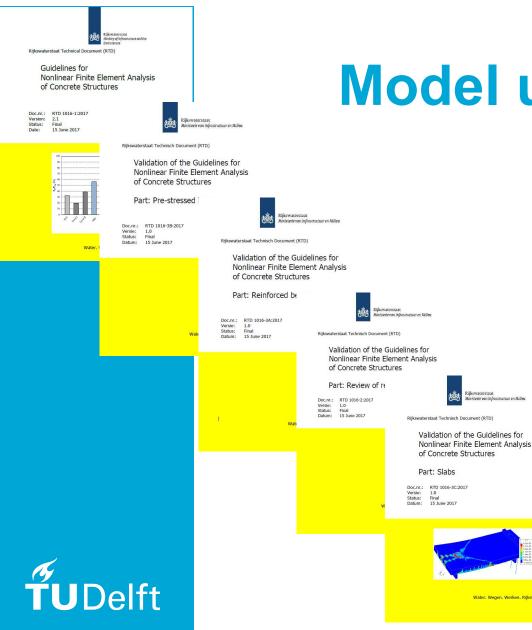
(It describes the obtained uncertainty in the prediction if a model was selected randomly)

Morten Engen, PhD thesis NTNU, 2017 15

Reliability methods

 Semi-probabilistic «safety formats» based on limited calibrations.

DNTNU **% TU**Delft


«WAY FORWARD»

1. Based on a "within-model uncertainty" adopting a fixed modelling approach

$$\theta_{3,i} = \left(\frac{R_{\exp}}{R_{\rm NLFEA}}\right)_{i}$$

Morten Engen, PhD thesis NTNU, 2017 18

2. Use fixed = documented modelling approaches.

E.g. based on guidelines

-or-

, Wegen, Werken, Rijkswatersta

on advices from the software program developers (?)

> Rijkswaterstaat technisch document 1016-1,2,3:2017, 2017

- 3. Provide values per "type of failure mode" and per "level of model calibration" (???)
- 4. Provide the possibility to determine the model uncertainty of a certain modelling approach for a certain application area (?)

Reliability methods

- 1. Provide methods based on response surfaces (???)
 - Attractive from an engineering point of view
 - Can be interpreted
- 2. Provide methods based on <u>calibrated</u> semi-probabilistic approaches

Concluding remark

Work to do between now and 2020

