
 

 

 

 



 

 

 

Aging and deteriorating infrastructure is an urgent issue in all industrialized countries. As the built 

environment comprises a substantial part (~80%) of our national wealth it is crucial to address this 

issue. Many civil engineering structures are approaching the end of their intended design life, for 

example most of our transportation infrastructure has been built in the 1960s and 1970s. Assessing 

the reliability of these structures is essential to keep the existing stock in operation. 

 

However, structural reliability and remaining service life assessment of these complex structures can 

be a daunting task. The main issue is that these assessments often involve a large number of random 

variables (e.g. due to random fields),  have computationally expensive physical models (e.g. NL-FEM 

models) and have small failure probabilities (1e3 to 1e6).  The reliability analysis of complex 

structures quickly becomes a computational challenge.  

 

To face this challenge, The Department of Structural Reliability at TNO organized a workshop on this 

topic. The aim of the workshop was to bring together researchers, practitioners, and software 

developers from all over the world to share experience, learn from each other, and to jointly find 

ways of solving these challenges.  

 

These proceedings contain the abstracts and slides of the 11 lectures held during the workshop. The 

first half of the lectures dealt with state-of-the-art reliability methods. The second half of the 

lectures dealt with the latest developments and challenges in engineering practice.  

 

We believe that the workshop was a great success, with participants form 22 different affiliations 

and from 10 different countries; from the field of Civil Engineering and the field of Aerospace 

Engineering; from the academia and from the practice.  

We would like to thank everyone who contributed to this workshop.  
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Structural reliability analysis requires estimation of the probability of failure, which is defined 

through a potentially high dimensional probability integral. The failure event is expressed in terms of 

an (often complex) engineering model with uncertain input. The probability of failure is commonly 

estimated with Monte Carlo-based sampling approaches due to their robustness in dealing with 

complex numerical models. Although the performance of the Monte Carlo method does not depend 

on the dimension of the random variable space, it deteriorates geometrically with decrease of the 

target failure probability.  

 

In this talk, a number of advanced sampling methods are discussed that improve the efficiency of 

crude Monte Carlo, while maintaining to a certain extent its independency on the number of random 

variables. In particular, we discuss methods that perform a sequence of sampling steps with aim at 

obtaining samples from a theoretically optimal importance sampling density – the density of the 

random variables censored at the failure domain. These methods include subset simulation [1, 2], 

sequential importance sampling [3] and cross-entropy importance sampling [4,5]. We focus on the 

former two and discuss computational settings that optimize their performance in high dimensional 

problems. We additionally discuss the potential of using surrogate or multi-fidelity models within a 

sequential approach to enhance computational efficiency. The performance of the methods is 

demonstrated with a number of numerical examples in high dimensions. 

[1]  Au, S. K., & Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by 

subset simulation. Probabilistic Engineering Mechanics, 16(4), 263-277.  

[2]  Papaioannou, I., Betz, W., Zwirglmaier, K., & Straub, D. (2015). MCMC algorithms for subset 

simulation. Probabilistic Engineering Mechanics, 41, 89-103.  

[3]  Papaioannou, I., Papadimitriou, C., & Straub, D. (2016). Sequential importance sampling for 

structural reliability analysis. Structural safety, 62, 66-75.  

[4]  Wang, Z., & Song, J. (2016). Cross-entropy-based adaptive importance sampling using von 

Mises-Fisher mixture for high dimensional reliability analysis. Structural Safety, 59, 42-52.  

[5]  Papaioannou, I., Geyer, S., & Straub, D. Modified cross-entropy-based importance sampling 

with a flexible mixture model. Manuscript. 
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Assessing risk quantitatively requires the quantification of the probability of occurrence of a specific 

event by properly propagating the uncertainty through the model that predicts the quantities of 

interest. The estimation of small probabilities of failure from computer simulations is a classical 

problem in engineering. In principle, rare failure events can be investigated through Monte Carlo 

simulation. However, this is computationally prohibitive for complex systems because it requires a 

large number of samples to obtain one failure sample.  

 

Advanced Monte Carlo methods aim at estimating rare failure probabilities more effi- ciently than 

direct Monte Carlo. Unfortunately, high dimension and model complexity make it extremely difficult 

to improve the efficiency of Monte Carlo algorithms purely based on prior knowledge, leaving 

algorithms that adapt the generation of samples during simulation the only choice.  

 

Importance Sampling [3], Subset Simulation [1] and Line Sampling [2] algorithms have become 

popular methods to solve it, thanks to its robustness in application and still savings in the number of 

simulations to achieve a given accuracy of estimation for rare events, compared to many other 

Monte Carlo approaches. Some recent advancement and numerical implementation [4] of these 

algorithms will be presented.  

 

[1]  Siu Kui Au and Edoardo Patelli. Subset simulation in finite-infinite dimensional space.     

  Reliability Engineering & System safety, 148:66–77, 2016.  

[2]  Marco de Angelis, Edoardo Patelli, and Michael Beer. Advanced line sampling for efficient  

robust reliability analysis. Structural safety, 52:170–182, 2015.  

[3] Marco de Angelis, Edoardo Patelli, and Michael Beer. Forced monte carlo simulation strategy  

for the design of maintenance plans with multiple inspections. ASCE-ASME Journal of Risk 

and Uncertainty in Engineering Systems. Part A: Civil Engineering, page D4016001, 2016.  

[4]  Edoardo Patelli, Matteo Broggi, Silva Tolo, and Jonathan Sadeghi. Cossan software a  

multidisciplinary and collaborative software for uncertainty quantication. In 2nd 

International Conference on Uncertainty Quantification in Computational Sciences and 

Engineering, volume Eccomas Proceedia ID: 5364, pages 212–224, 2017. 
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In order to overcome challenges in low-probability, high-dimensional reliability problems (potentially 

with multiple failure domains), the speaker has been developing various reliability analysis methods 

recently. The presentation in this workshop will focus on two methods developed based on hyper-

spherical description of high-dimensional reliability problems: (1) cross-entropy-based adaptive 

importance sampling using a von Misers-Fisher mixture model (Wang and Song, 2016); and (2) 

hyper-spherical extrapolation methods (Wang and Song, under review). The presentation will 

introduce the two methods in detail and present their performances in various numerical examples 

in order to identify merits and future research topics of the hyper-spherical approaches.  

 

[1]  Wang, Z., and J. Song (2016). Cross-entropy-based adaptive importance sampling using von 

Mises–Fisher mixture for high dimensional reliability analysis. Structural Safety, 59:42-52. 

[2]  Wang, Z., and J. Song (under review). Hyper-spherical extrapolation method (HEM) for 

general high dimensional reliability problems. Structural Safety. 
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High dimensional Euclidean space
Volume Explosion

In 𝑛-dimensional space, consider a hypersphere inscribed in a hypercube

𝑉௛௬௣௘௥௦௣௛௘௥௘ =
𝜋௡ ଶ⁄
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→ 0, 𝑛 → +∞

Volume Concentration

Volume tends to distribute in the ‘tails’

Betancourt (2017)

High dimensional probability space
There may exist a typical set 

In 𝑛-dimensional space, consider the probability 

Pr (𝒒 ∈ Ω) = න 𝜋(𝒒)
𝒒∈ஐ

𝑑𝒒

PDF 𝜋(𝒒) concentrates around its mode,

𝑑𝒒 is much larger away from the mode

Betancourt (2017)

High dimensional standard normal space
The typical set is a hyper-ring

For 𝑛 = 400, 95% probability is 
contained within the ring 20 ± 1, 
and 99.99% is contained within the 
ring 20 ± 2. 

A trade-off between the exponentially decrease 
in probability densities with the distance from 
the mode and the exponentially increase in the 
spherical area with the distance from the mode

Important ring is named by Katafygiotis and Zuev (2008)
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Hyper-spherical formulation

𝑃௙ = න 𝜃(𝑟)𝑓ఞ(𝑟)𝑑𝑟
ஶ

଴

≅
1

𝑀
෍ 𝜃(𝑟௜)

ெ

௜ୀଵ

where  𝜃 𝑟 = 𝐴௙(𝑟)/𝐴௡, 𝐴௡ =
௡గ೙/మ

୻
೙

మ
ାଵ

• Valid for any dimensions

• Especially convenient for high dimensional problems

𝑟௜ drawn from 𝑓ఞ(𝑟) is likely to have 𝑟௜ ∈ [ 𝑛 − 𝜀, 𝑛 + 𝜀]. 

Variation of  𝜃(𝑟௜) with 𝑟௜ (drawn from 𝑓ఞ(𝑟)) is expected to be small
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Hyper-spherical formulation based 
importance sampling

𝑃௙ = න 𝜃(𝑟)𝑓ఞ(𝑟)𝑑𝑟
ஶ

଴

≅
1

𝑀
෍ 𝜃(𝑟௜)

ெ

௜ୀଵ

Construct an IS density to estimate 𝜃(𝑟௜)

𝜃 𝑟௜ = න
𝐼௥೔

𝑟௜𝐮ഥ

𝐴௡
𝑑𝐮ഥ

= න
𝐼௥೔

𝑟௜𝐮ഥ

𝐴௡𝑓ூௌ 𝐮ഥ
𝑓ூௌ 𝐮ഥ 𝑑𝐮ഥ ≅

1

𝑁
෍

𝐼௥೔
𝑟௜𝐮ഥ௝

𝐴௡𝑓ூௌ 𝐮ഥ௝

ே

௝ୀଵ

Finally, the IS formula is derived as    

𝑃௙ ≅
1

𝑁 ȉ 𝑀
෍ ෍

𝐼௥೔
𝑟௜𝐮ഥ௝

𝐴௡𝑓ூௌ 𝐮ഥ௝

ே

௝ୀଵ

ெ

௜ୀଵ

where 𝑟௜ drawn from 𝑓ఞ(𝑟), 𝐮ഥ௝ drawn from 𝑓ூௌ 𝐮ഥ

Von Mises-Fisher Mixture as the IS density

• Sampling by “von Mises-Fisher Mixture” model

𝑓୴୑୊୑ 𝐮ഥ; 𝐯 = ∑ 𝛼௞
௄
௞ୀଵ 𝑓୴୑୊ 𝐮ഥ; 𝐯௞

where  ∑ 𝛼௞
௄
௞ୀଵ = 1 ，𝛼௞ > 0 for ∀𝑘

𝑓୴୑୊ 𝐮ഥ = 𝑐ௗ(𝜅)𝑒఑𝝁೅𝐮ഥ

• 𝜅: concentration parameter

• 𝝁: mean direction

•    𝛼௞: weight for the k-th vMF

Wang, Z., and Song J.(2016). Cross-entropy-based adaptive importance sampling using von Mises–Fisher mixture for 
high dimensional reliability analysis. Structural Safety. 59: 42-52.
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How can we find parameters of the vMFM
model?
“Best” importance sampling density

• Can’t use directly… if we already know Pf, we do not need MCS or IS.

• Still helpful for improving efficiency, if h(x) is chosen in order to have a shape 
similar to that of I(x)fX(x)
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Adaptive importance sampling by minimizing 
cross entropy

Kullback-Leibler “Cross Entropy” (CE)

• “Distance” between “best” IS density p*(x) and current one h(x)

• One can find a good h(x) by minimizing Kullback-Leibler CE, i.e.

• Finds the optimal values of the distribution parameter(s) v approximately by small-size 
pre-sampling, then performs final importance sampling

• Rubinstein & Kroese (2004) used uni-modal parametric distribution for h(x;v) and 
provided updating rules to find optimal v through sampling
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* * * *

*

arg min  ( , ( )) arg min ( ) ln ( ) ( ) ln ( ; )

arg max ( ) ln ( ; )

arg max ( ) ( ) ln ( ; )

D p h p p d p h d

p h d

I f h d

   





 





v v

v

v
X

x x x x x x

x x

v v

v

v

x

x x x x



• CE-AIS-GM Algorithm

CE-AIS with Gaussian Mixture (Kurtz & Song 2013)

Optimal DensityNear Optimal Density

1

( ; ) π ( | , )
K

k k k
k

h N


x v x  

Kurtz, N., and Song J. (2013). Cross-entropy-based adaptive importance sampling using Gaussian mixture. Structural 
Safety. 42:35-44.

CE-AIS with Gaussian Mixture (Kurtz & Song 2013)
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Updating through Pre-samplings “Best” Density

Parameter estimation for vMFM model

𝛼௞ =
∑ 𝐼௥೔

𝐮ഥ௝ 𝑊(𝐮ഥ௝; 𝐰)Υ𝒋(𝑧௞)ே
𝒋ୀଵ

∑ 𝐼ோ 𝐮ഥ௝ 𝑊(𝐮ഥ௝; 𝐰)ே
𝒋ୀଵ

𝝁௞ =
∑ 𝐼௥೔

𝐮ഥ௝ 𝑊(𝐮ഥ௝; 𝐰)Υ𝒋(𝑧௞)𝐮ഥ௝
ே
௜ୀଵ

∑ 𝐼௥೔
𝐮ഥ௝ 𝑊(𝐮ഥ௝; 𝐰)Υ𝒋(𝑧௞)𝐮ഥ௝

ே
௜ୀଵ

𝜅௞ ≅
𝜉𝑛 − 𝜉ଷ

1 − 𝜉ଶ

𝜉 =
∑ 𝐼௥೔

𝐮ഥ௝ 𝑊(𝐮ഥ௝; 𝐰)Υ𝒋(𝑧௞)𝐮ഥ௝
ே
௜ୀଵ

∑ 𝐼௥೔
𝐮ഥ௝ 𝑊(𝐮ഥ௝; 𝐰)Υ𝒋(𝑧௞)ே

௜ୀଵ

Υ𝒋(𝑧௞) =
𝛼௞𝑓୴୑୊ 𝐮ഥ௝; 𝐯௞

∑ 𝛼௞
௄
௞ୀଵ 𝑓୴୑୊ 𝐮ഥ௝; 𝐯௞

where

Procedures of Hyper-spherical importance 
sampling using vMFM

1. Pre-sampling to obtain near-optimal (i.e. minimum CE) vMFM
sampling density using updating rules

2. Perform the final IS on hyper-spheres with radius drawn from the 
𝑓ఞ(𝑟)

Example 1: Series system reliability in high-
dimension
Gଵ 𝐮 = 𝛽ଵ 𝑛 − ෍ 𝐮௜

௡

௜ୀଵ

, Gଶ 𝐮 = 𝛽ଶ 𝑛 + ෍ 𝐮௜

௡

௜ୀଵ

System failure domain: Gଵ 𝐮 ≤ 𝟎 ∪ G𝟐 𝐮 ≤ 𝟎

𝛽ଵ = 𝛽ଶ = 3.5, 𝑛 = 300

Updating of mean directions:

Example 2: Nonlinear random vibration 
analysis of MDOF system

• Discrete representation of stochastic process representing 
ground acceleration
(in frequency domain)

𝑈̈௚ 𝑡 = ∑ 𝜎௝[u௝
௡/ଶ
௝ୀଵ cos 𝜔௝𝑡 + uො௝ sin 𝜔௝𝑡 ]

where

u௝, uො௝: independent standard normal random variables

𝜔௝: discretized frequency points

𝜎𝒋 = 2𝑆(𝜔௝)Δ𝜔

𝑆 𝜔௝ : two-sided power spectrum density/PSD 

Δ𝜔: frequency step size



• Instantaneous failure

• First-passage failure (series system)

Example 2: Updating of vMFM Contents
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Hyper-spherical formulation based 
extrapolation

𝑃௙ = න 𝜃(𝑟)𝑓ఞ(𝑟)𝑑𝑟
ஶ

଴

Build an extrapolation method via writing 𝜃(𝑟)
as 𝜃 𝑟 ≅ 𝜃መ(𝑟, 𝐯)

𝑃௙ = න 𝜃(𝑟)𝑓ఞ(𝑟)𝑑𝑟
ஶ

଴

≅ න 𝜃෠(𝑟, 𝐯)𝑓ఞ(𝑟)𝑑
௡ାக

௡ିக

𝑟

Observe that 𝜃(𝑟) grows larger if 𝑟 increases, given the safe domain is 
star-shaped with respect to the origin

Concept of the extrapolation: 
• Find 𝐯 of 𝜃መ(𝑟, 𝐯) given 𝜃 𝑟 estimated from large radius 𝑟
• Estimate 𝑃௙ using the hyper-spherical formulation

Model for failure ratio 𝜃መ(𝑟, 𝐯)

𝜃௖௔௣ 𝑟, α =
𝐴௖௔௣ 𝑟, α

𝐴௡ 𝑟
=

1

2
𝐵௦௜௡మ஑

𝑛 − 1

2
,
1

2

𝐵௦௜௡మ஑ ȉ is a regularized incomplete beta factor

𝜃መ 𝑟, α௞, 𝐾 = ෍ 𝜃௖௔௣,௞ 𝑟, α௞

௄

௞ୀଵ

=
1

2
෍ 𝐵௦௜௡మ஑ೖ

𝑛 − 1

2
,
1

2

௄

௞ୀଵ

Considering the dependence of α௞ on 𝑟

𝜃መ 𝑟, 𝑏௞, 𝐾 =
1

2
෍ 𝐵

ଵି
௕ೖ ௥

௥

మ

𝑛 − 1

2
,
1

2

௄

௞ୀଵ

Assume 𝑏௞ 𝑟 does not change dramatically with 𝑟
• Zeroth-order hyper-spherical extrapolation method (ZO-HEM): 

𝑏௞ 𝑟 = 𝑏௞

• First-order hyper-spherical extrapolation method (FO-HEM): 
𝑏௞ 𝑟 = 𝑎௞𝑟 + 𝑏௞

Wang, Z., and Song J. (2018). Hyper-spherical extrapolation method (HEM) for general high dimensional reliability 
problems. Structural Safety, 72: 65–73. 

Probability estimation using HEM

• ZO-HEM:

𝑃௙ ≅ ෍ Φ(−𝑏௞)

௄

௞ୀଵ

• FO-HEM:

𝑃௙ ≅
1

2
න ෍ 𝐵

ଵି ௔ೖା
௕ೖ
௥

మ
𝑛 − 1

2
,
1

2

௄

௞ୀଵ

𝑓ఞ(𝑟)𝑑
௡ାக

௡ିக

𝑟

Procedures of HEM

• Select a sequence of 𝑚 radii 𝑟௜, 𝑖 = 1, … , 𝑚, 𝑟௜ ∈ 𝑟௟௢௪, 𝑟௨௣

• For each 𝑟௜, compute the failure ratio 𝜃෠ 𝑟௜

• Given 𝜃෠ 𝑟௜ , compute optimal values of 𝑏௞ and 𝐾 in for ZO-
HEM, or 𝑎௞, 𝑏௞ and 𝐾 for FO-HEM, so that the error function 

∑ 𝑤௜ log 𝜃෠ 𝑟௜ − log 𝜃 𝑟௜
ଶ௠

௜ୀଵ is minimized, where 𝑤௜ is a 
weight that puts more emphasis on more reliable data

• Compute the failure probability using CDF of standard 
normal distribution or numerical integration



Example 1: Series system reliability in high-
dimension
Gଵ 𝐮 = 𝛽ଵ 𝑛 − ෍ 𝐮௜

௡

௜ୀଵ

, Gଶ 𝐮 = 𝛽ଶ 𝑛 + ෍ 𝐮௜

௡

௜ୀଵ

System failure domain: Gଵ 𝐮 ≤ 𝟎 ∪ G𝟐 𝐮 ≤ 𝟎

𝛽଴

ZO-HEM FO-HEM Exact

β෠ c.o.v
Error 
(%)

β෠ c.o.v
Error 
(%)

β

3.0 2.784 0.051 0.07 2.800 0.053 0.65 2.782

3.5 3.328 0.022 0.51 3.338 0.058 0.82 3.311

4.0 3.820 0.019 -0.33 3.846 0.043 0.33 3.833

4.5 4.366 0.009 0.36 4.381 0.025 0.71 4.350

5.0 4.906 0.052 0.86 4.894 0.051 0.59 4.865

Example 1: Series system reliability in high-
dimension
𝜃 𝑟 versus 𝑟 curves for 𝛽଴ = 5.0

Example 2: Nonlinear random vibration 
analysis of SDOF system

SDOF Bouc-Wen oscillator subjected 
to white noise

Thres
hold 
(m)

ZO-HEM FO-HEM Exact

β෠ c.o.v
Error 
(%)

β෠ c.o.v
Error 
(%)

β

0.08 2.480 0.025 -2.95 2.518 0.043 -1.48 2.556

0.09 2.953 0.035 -2.72 2.971 0.048 -2.13 3.036

0.10 3.401 0.031 -3.92 3.475 0.037 -1.84 3.540

Example 2: Nonlinear random vibration 
analysis of SDOF system

𝜃 𝑟 versus 𝑟 curves for 0.10 (m) threshold

Contents

Hyper-spherical formulation

Hyper-spherical formulation based importance sampling

Hyper-spherical formulation based extrapolation

Summary and future research

Future research

• [Possibilities] Integration with Hamiltonian Monte Carlo based subset 
simulation 

Wang Z, Broccardo M, Song J. Hamiltonian Monte Carlo Methods for Subset Simulation in Reliability 
Analysis. arXiv:1706.01435 



Summary

• [Summary 1] A hyper-spherical formulation to perform reliability analysis in 
high dimensional Gaussian space is proposed. 

• [Summary 2] An importance sampling method using the hyper-spherical 
formulation in conjunction with von Mises-Fisher mixture distribution is 
proposed.

• [Summary 3] An extrapolation method using the the hyper-spherical 
formulation is proposed.

Wang, Z., and Song J.(2016). Cross-entropy-based adaptive importance sampling using von Mises–Fisher mixture for 
high dimensional reliability analysis. Structural Safety. 59: 42-52.

Wang, Z., and Song J. (2018). Hyper-spherical extrapolation method (HEM) for general high dimensional reliability 
problems. Structural Safety, 72: 65–73. 

http://systemreliability.wordpress.com
junhosong@snu.ac.kr
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Approach your problems from the right end 

and begin with the answers. Then one day, 

perhaps you will find the final question.  

R. van Gulik, The Chinese Maze Murders  

The classical problem of structural reliability is that for a limit state function (LSF) ( )g x  in the n -

dimensional Euclidean space and a probability distribution defined by a probability density function 

(PDF) ( )f x  the probability of failure is defined as an integral:  

 

   
( ) 0

    
g

P F f d


 
x

x x  

Most methods transform the problem from the original space to the standard normal space which 

yields: 

/

0( )

2
2 | |

expP( ) (2 )  .
2g

n dF  



 
 






u

u
u  

Now several points will be discussed:  

• Some philosophy. What is the problem seen in larger context? During the last fifty years the 

problem described in the last equation has changed, even if the formulation remained the 

same. Here gestalt switches occur not because we change our point of view, but because the 

structure we are studying changes. What was it and what is it now? Is the information we 

want to find numbers or structures? Plea for a structuralist view.  

 

• Definition of the problem as a global minimization problem. Using the structure of the 

standard normal probability space one can define the problem as finding specific 

submanifolds on hyperspheres.  

  



 

 

• Does a method which claims that the structure of the problem is irrelevant as subset 

sampling really work? This is a cautionary tale about a method without a clear mathematical 

concept.  

 

• A tentative proposal for a solution. In the original FORM/SORM concept the design point is 

searched by solving the Lagrangian system:  

( )

( ) 0

g

g

  


u u 0

u
  

 

Now, instead one searches the extrema of the LSF on a centered sphere with radius    

2 2

( )

0| |

g 











u u 0

u
 

Going outside from a sphere where the minimum is larger than zero, one can reach by 

iteration a sphere where the minimum is equal to zero. For large dimensions then the 

probability mass of the set {g(u) ≤ 0} lies on a thin shell outside of this sphere. 
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RESPONSE SURFACE METHODS and RANDOM FIELDS

coupled to NONLINEAR FINITE ELEMENT ANALYSIS 
using DIANA

2018, January 24 

Overview

I. Response Surface Method coupled to FEA (Probab)
1. Reliability analysis with DIANA

2. Case study: Probabilistic analysis of reinforced concrete beam

3. Case study: Reliability assessment of gravity dam block

4. Discussion

II. Random Field coupled to FEA
1. Random fields with DIANA

2. Case study D: Concrete floor under restrained shrinkage

3. Discussion

III. Challenges

I. Response Surface Methods coupled to FEA

I. 1. Reliability analysis with DIANA

Directional Adaptive Response Surface Method (DARS)

• limit state function evaluations (LSFE)

– NLFEA : 𝛽௜ ≤ 𝛽௖௥௜௧

– RSF      : 𝛽௜ > 𝛽௖௥௜௧

• directional sampling in 𝑈-space

– 𝑃௙ =
ଵ

ே
∑ (1 − 𝜒௡

ଶ(𝛽௜
ଶ))ே

௜ୀଵ

– 𝐶𝑂𝑉௉೑
=

ଵ

ே(ேିଵ)
∑ (𝑃௜−𝑃௙)ே

௜ୀଵ

• response surface function (RSF)

𝐺∗ 𝑈௡ = 𝛼 + ෍ 𝑏௜𝑈௜ + ෍ ෍ 𝑐௜௝𝑈௜𝑈௝

௜

௝ୀଵ

௡

௜ୀଵ

௡

௜ୀଵ
Based on the PhD Thesis of P. Waarts

I. Additional Case study

Concrete block(s) under monotonic loading
• performance
• analytical formulas / NLFEA convergence
• material uncertainty
• limit state surface

𝐺{𝑓௖, 𝜽} = 𝜽 ȉ  𝐹୫ୟ୶{𝑓௖} − 𝐹௘௫௔௠• model uncertainty, 𝜽 :

𝐶𝑂𝑉௉೑
sampled
directions

no. of 
NLFEA

GRSF = 0 design 
point

β βanalytical

45% 24 34 7 3.88 3.76 3.84

𝐺{𝑓௖} = 𝐹୫ୟ୶{𝑓௖} − 𝐹௘௫௔௠

I. 2. Case study

Experimental results

• similar experiments

• different failure mode

beam A – flexural failure

beam C – shear failurebeam B – shear failure

material uncertainty

Based on MSc Thesis by P. EvangeliouBased on MSc Thesis by P. Evangeliou



• X-space

• limit state function

• tight tolerance

• ≈ 7800 dof’s

I. 2. Case study

Based on MSc Thesis by P. EvangeliouBased on MSc Thesis by P. Evangeliou

I. 2. Case study

𝛽 = 2.22 ,  LSFENLFEA = 200 ,  LSFERFS = 1200

Response Surface

failure 
domain

safe domain

limit state
surface

design 
point

Based on MSc Thesis by P. EvangeliouBased on MSc Thesis by P. Evangeliou

I. 3. Case study 

Reliability assessment of dam block against sliding failure ICOLD 2017
• 3D FE model

• Discontinuities & Nonlinearities

𝜓 - macroscopic roughness Mohr-Coulomb friction bondslip anchors

≈ 143000
dof’s

I. 3. Case study 

Advanced FE modeling

post-tensioning
(bondslip behavior)

low-water level
flood

(stochastic)

• Staggered analysis

• Mohr-Coulomb zero-tension interfaces

• Phased analysis

ICOLD Benchmark 2017

• limit state function

𝑞 =  
𝜏௦௛௘௔௥

𝑐 + 𝑝 ȉ tan (𝜑௧௢௧)
 

𝐺 𝑿 = 1.0 − 𝑞(𝑿)

I. 3. Case study 

• uncertainty: material & boundary

ICOLD Benchmark 2017

I. 3. Case study 

Reliability assessment

• component 

• system

ICOLD Benchmark 2017



I. 5. Discussion

Coupling DARS to NLFEA

Robustness
• quality of RSF
• line search
• numerical stability
• model uncertainty

Efficiency
• parallel processing
• advanced sampling

Extend benchmarks

𝐺 𝑿, 𝜽 = 𝜽 ȉ R{𝐗} − S

II. Random Fields coupled to FEA

II. 1. Random Fields with DIANA

JCSS material model
• integration points

Correlation function
• exponential
• squared exponential 
• threshold value

Distribution
• normal 
• log-normal

Random Field generators
• Covariance Matrix Decomposition (CMD)
• Fast Fourier Transform (FFT)
• Local Average Subdivision (LAS)

𝜌 Δ𝑥 = 𝑒
ି 

୼୶మ

௅೎
మ

𝜌 Δ𝑥 = 𝑐ଵ + (1 − 𝑐ଵ) ȉ 𝑒
ି 

୼୶మ

௅೎
మ

𝜌 Δ𝑥 = 𝑒
ି 

୼୶
௅೎

II. 2. Case study D

Mechanical scheme:

Random Field:
• JCSS: 𝑓௖ ( ρ = 1.0 )
• log-normal
• FFT
• SqExp

compressive
strength

tensile
strength

Young’s
modulus

Based on MSc Thesis by R.v.d.Have

II. 2. Case study D

• Crack growth – no RF • Crack growth – with RF

Based on MSc Thesis by R.v.d.Have

II. 2. Case study D

Number of cracks

tensile 
strength

crack 
strains

RF 1 RF 2 RF 3

Based on MSc Thesis by R.v.d.Have



II. 3. Discussion

RF coupling to NLFEA
• crack initialization at weakest point / asymmetric crack pattern
• numerical stability (?)

− gradual development of cracking: convergence
− cracking localization (ρ, COV )

RF parameters

III. Challenges

• Coupling RF to DARS to NLFEA

• Calibrate current safety formats

• Engineering practice

WWW.DIANAFEA.COM

DIANA FEA BV
Delftechpark 19a
2628 XJ Delft 
The Netherlands
T  +31 (0) 88 34262 00
F  +31 (0) 88 34262 99

DIANA FEA BV
Vlamoven 34
6826 TN Arnhem
The Netherlands
T  +31 (0) 88 34262 00
F  +31 (0) 88 34262 99
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RELIABILITY ANALYSIS OF

REINFORCED CONCRETE STRUCTURES: 
ACCOMPLISHMENTS AND ASPIRATIONS

Arthur Slobbe and Arpad Rozsas

TNO workshop: Computational Challenges in the Reliability Assessment of Engineering Structures
2018, Delft

MOTIVATION

Built infrastructure: >50% of national wealth[1].

Ageing infrastructure[2].

Uncertainty of parameters, models[2].

2 | Reliability analysis of RC structures

Aim: 

Better understanding of structural behaviour.

Uncertainty reduction.

More economical asset management.

[1] Sarja A. (2005). Integrated Life Cycle Design of Structures. e-Library: Taylor & Francis, 2005.

[2] Frangopol, D. M. (2011). Life-cycle performance, management, and optimisation of structural systems under 
uncertainty: accomplishments and challenges. Structure and Infrastructure Engineering, 7(6), 389-413.

TNO workshop, Delft             24 January 2018

PROBLEM STATEMENT
Current practice and methods:

Almost exclusively for new structures.

How to deal with deterioration?

What to do with non-complying structures?
(reserves?)

How to use NLFEA for verification?
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Probabilistic model

P
h

ys
ic

al
 

(m
ec

h
an

ic
al

 m
od

el
)

Glob. safety 

factor

E-COV;

Novel method

Reli. analysis (level 

II/III) Non-linear FEA

State of the 

current 

practice

Linear FEA

State of the 

current 

practice

“Hand” calculation

No explicit 

prob. model

Some prob. 

models

All relevant variables 

are assigned a prob. 

modelReliability assessment can help, but:

NLFEA based limit state functions are computationally expensive.

Model uncertainty?

Random fields?

How to translate to methods usable in practice?

RELATED TNO PROJECTS

Reinforced concrete bridges (deterioration).

Hydraulic structures (soil-structure interaction + deterioration).

Advanced NLFEA

Probabilistic assessment:

Reliability assessment.

Structural health monitoring.

Probabilistic damage identification.

Probabilistic modelling of corrosion.
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COMMON UNDERLYING CHALLENGES

Computational challenge: attain reasonable running times.

Multiple failure modes

Random fields

Probabilistic updating for existing structures.

Code calibration (optimization).

5 | Reliability analysis of RC structures TNO workshop, Delft             24 January 2018

Pathways

Reli./prob. algorithm System representation Comp. algorithm

(physical model)(# LSF eval.) (parallelization)

TOOLS – RELIABILITY ANALYSIS

In-house: 

Prob2B (+ Python + Openturns)

FERUM (Matlab) – extended:

Adaptive direction sampling[1]: 

multiple of response surface types 
(polynomial, kriging, goodness-of-fit)

Coupling with FEM, e.g. Diana, OpenSees.

6 | Reliability analysis of RC structures TNO workshop, Delft             24 January 2018

[1] Grooteman, F. (2011). An adaptive directional importance sampling method for structural reliability. Probabilistic Engineering Mechanics, 26(2), 134-141.



RC STRUCTURES
DEEP BEAM

High-strength RC deep beam.

Bending failure & diagonal crack at support

NLFEA in Diana

Plane stress elements.

Concrete: cracking, crushing.

Rebar: hardening and rupture (perfect bond).
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[1] Foster, S.J., Gilbert, R.I. (1998) Experimental Studies on High-Strength Concrete Deep Beams. ACI Structural Journal. 95(4). 382-390.

.

[1]

cc sy( , )g R f f S 

Limit state function (three random variables):

RC STRUCTURES
DEEP BEAM
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Method # LSF
evaluations

Running time β αi R* [kN]

DARS[1] 66 2.5 hours* 3.87 {0.05, 0.15, -0.99} 1446

Variable Distribution Mean Coefficient of variation

Concrete compressive strength (fcc) Lognormal 88 MPa 0.06

Rebar yield strength (fsy) Lognormal 440 MPa 0.045

External load (S) Gumbel 600 KN 0.20

*Diana 10.1 and a Kepler computer was used for the analysis: 16GB Intel(R) Xeon(R) CPU E5-2620 v3 @2.40GHz; 2.40GHz; Windows 10 Enterprise 64-bit SP1.

RC STRUCTURES
DEEP BEAM

Added value of more advanced modelling:
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analytical modelling nonlinear finite element modelling

semi-probabilistic methods full-probabilistic method

EC PF GRF E-COV DARS

Rd [kN] 771 1110 1110 1196 -
Sd [kN] 1367 1367 1367 1367 equivalent prob. model 

Sd / Rd [-] 1.77 1.23 1.23 1.14 -

β [-] - - - - 3.87

β/βt [-] - - - - 1.02

Probabilistic model
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factor
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Reli. analysis (level 

II/III) Non-linear FEA

State of the 

current 

practice

Linear FEA

State of the 

current 

practice

“Hand” calculation

No explicit 

prob. model

Some prob. 

models

All relevant variables 

are assigned a prob. 

model

RC STRUCTURES
CONTINUOUS BEAM

Three-span beam.

Bending failure (mechanism).

NLFEA in Diana:

Beam-column elements.

Concrete: cracking, crushing.

Rebar: hardening and rupture (perfect bond).
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[1] Jacinto, L., Neves, L.A.C., Santos, L. (2015). Bayesian assessment of an existing bridge: a case study. Structure and Infrastructure Engineering, 12(1), 1-17.  

. 

[1]
cc sy su su( , , , )g R f f f Q 

Limit state function (five random variables):

RC STRUCTURES
CONTINUOUS BEAM

11 | Reliability analysis of RC structures TNO workshop, Delft             24 January 2018

Variable Distribution Mean Coefficient 
of variation

Concrete compressive strength (fcc) Lognormal 51.2 MPa 0.07
Rebar yield strength (fsy) Lognormal 440 MPa 0.065
Rebar ultimate strength (fsu) Lognormal 550 MPa 0.07
Rebar ultimate strain (εsu) Lognormal 0.08 0.09
External load (Q) Gumbel 1.5∙102 kN 0.20

Method # of iteration/ 
simulation 
steps

# of limit state 
function 
evaluations

Reliability index, 
β

Total 
comp. time 
[hr] †

DARS - 113 3.80 12
† Diana 10.1 and a Kepler computer was used for the analysis: 16GB Intel(R) Xeon(R) CPU E5-2620 

v3 @2.40GHz; 2.40GHz; Windows 10 Enterprise 64-bit SP1.

RC STRUCTURES
CONTINUOUS BEAM
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analytical modelling nonlinear finite element modelling

semi-probabilistic methods full-probabilistic method

EC PF GRF E-COV DARS

Rd [kN] 293 (or 211) 242 295 271 -
Sd [kN] 342 342 342 342 equivalent prob. model 

Sd / Rd [-] 1.62 1.41 1.16 1.26 -

β [-] - - - - 3.80

β/βt [-] - - - - 1.00

Added value of more advanced modelling:



RC STRUCTURES
CONTINUOUS BEAM

Extension (ongoing):

Random field representation of corrosion.

Pitting corrosion of rebars.

NLFEA also in OpenSees to reduce the calculation time.
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[1] Tian Y., Xie L., Xu Z., and Lu X.. (2015). GPU-Powered High-Performance Computing for the Analysis of Large-Scale Structures Based on OpenSees. 2015 
International Workshop on Computing in Civil Engineering.

[2] Ventura C.E. and Bebamzadeh A. (2013). Los Angles Tall Buildings Structural Design Council. Annual meeting. Presentation slides.

.

Promising results/directions from the literature:

GPU parallelization: 10x speed-up[1].

Cloud computing[2].

HYDRAULIC STRUCTURES
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anchor

Sheet pile wall
Z

NLFEA.

Multiple failure modes (e.g. anchor, sheet pile wall, soil).

Corrosion.

Spatial variability.

CHALLENGES – QUESTIONS

Computationally demanding physical models → reduce the computational time:

Parallelization.

“Smart” algorithms.

Solving reliability problems with random fields (1D-2D-(3D)),
(large number of correlated variables).

Multiple failure modes.

Reliability based calibration of methods for practice, e.g.:

NLFEA-based verification and/or design.
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We are looking, open for:

Join our efforts on implementing and testing algorithms/methods.

Benchmark problems (the showcased examples).

Joint effort to compile an open document with reliability methods (pros, cons).

THANK YOU FOR YOUR 
ATTENTION

Take a look:
TIME.TNO.NL
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UNCERTAINTY OF NUMERICAL MODELS 
OF RC STRUCTURES

Vladimir Cervenka
Cervenka Consulting, Prague
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CONTENTS

Model uncertainty

Experiments

Numerical simulations in ATENA

Safety factor for model uncertainty

ČERVENKA CONSULTING

PRAHA

WWW.CERVENKA.CZ

MODEL UNCERTAINTY TNO Computaional

Challenges Jan  2018

Design assisted by numerical simulations 

ČERVENKA CONSULTING

PRAHA

WWW.CERVENKA.CZ

MODEL UNCERTAINTY TNO Computaional

Challenges Jan  2018
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MODEL UNCERTAINTY TNO Computaional

Challenges Jan  2018

FEM Nonlinear analysis of ULS → Global safety format 

dd RF  m
d

M Rd

R
R

 


Safety factor for model uncertainty Rd

EN 1992 - 2

06.1Rd

Model Code 2010

1.10.1 Rd

Gglobal safety factor  for material uncertainty M

Failure mode
Constitutive formulations

ČERVENKA CONSULTING

PRAHA

WWW.CERVENKA.CZ

MODEL UNCERTAINTY TNO Computaional

Challenges Jan  2018

sim

R

u

te

la n

st
R

tio
 

Model uncertainty  as random variable
Method of assessment based on validation by experiments

Data base      ,  i – no. of samplesi

Safety factor of model uncertainty






 )exp( VR

Rd


Large data set – log-normal PDF

Limited data set – Student’s PDF
))1(exp(

1

112.0 


Vnt p
Rd 


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Case study   ULS                            33 cases

Punching shear tests                     15 
Guandalini, S. And Muttoni, A.,  EPFL, Lausanne
Hallgren M., KTH Stockholm

Shear strength  of large beams      7
Collins M.P., Toronto

Bending strength of beams           11
Debernardi P.G., Torino
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MODEL UNCERTAINTY TNO Computaional

Challenges Jan  2018

Range of parameters: 

Modes of failure:
Brittle (concrete), ductile (steel)
With and without shear reinforcement

Concrete:
NSC, HSC

Size range:  
0.1 to 4 m         scale 1:40

ČERVENKA CONSULTING
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WWW.CERVENKA.CZ

MODEL UNCERTAINTY TNO Computaional

Challenges Jan  2018

Numerical simulation by ATENA

concrete: fracture-plastic constitutive law

steel: multilinear with hardening

bond-slip interface
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Punching shear tests by  
Guandalini, S. And Muttoni, A.,  EPFL, Lausanne
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Punching shear 
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Prediction of shear strength test  Torornto 2015 
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H=4m

H=2m

H=0.3m
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Shear strength predictions 
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Bending strength of normal beams by Debernardi, Torino

steel
failure

concrete
failure

h= 200,
400,
600mm

p= 0.6-2%
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Failure 
mode

Punching 0.971 0.076 1.16

Shear 0.984 0.067 1.13

Bending 1.072 0.052 1.01

All failure 
modes

0.979 0.081 1.16

 V Rd

Safety factors in ULS due to 
model uncertainty NLFEA
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CONCLUSIONS  ULS

Model uncertaity is reflecting the knowledge
comprised in numerical model.

Validation by experiments is required.

Safety factor for model uncertainty for 
ULS of all RC structural types and sizes

It is valid for ATENA models only

1.16Rd 
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Uncertaities of crack models  in SLS

/w experiment modelw w 

Model uncertainty w is a random variable

 - mean uncertainty, model validation

V - coefficient of variation, measure of uncertainty
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Experiments by Alejandro Perez Caldentey

variable:   
reinforcement Ø 12 and Ø 25mm
cover 20 and 70mm 

fc = 27 Mpa
fyk = 500 MPa
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Experimental crack patterns
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Crack development
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Bond stress
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Model 
uncertainty
mean Vθ

12-20-00

P [kN] 69.6 89.2 161.6
wmean [mm] 0.231 0.305 1.233
wmax [mm] 0.245 0.328 1.560
θ w mean 0.711 0.797 0.513 0.67 0.22
θ w max 1.510 1.250 0.621 1.13 0.41

12-70-00

P [kN] 51.1 60.7 100
wmean [mm] 0.297 0.353 0.691
wmax [mm] 0.297 0.374 0.780
θ w mean 0.828 1.079 0.947 0.95 0.13
θ w max 1.111 1.275 1.474 1.29 0.14

25-20-00

P [kN] 102.1 183.3 403
wmean [mm] 0.062 0.126 0.280
wmax [mm] 0.068 0.150 0.420
θ w mean 1.971 1.178 1.259 1.47 0.30
θ w max 2.916 1.913 1.638 2.16 0.31

25-70-00

P [kN] 56.7 101.7 298.8
wmean [mm] 0.082 0.192 0.621
wmax [mm] 0.089 0.217 0.877
θ w mean 1.360 1.229 1.193 1.26 0.07
θ w max 1.787 1.544 1.324 1.55 0.15

All specimens
all load levels

θ w,mean
1.218 1.071 0.978 1.09 0.35

θ w,max
1.831 1.496 1.264 1.53 0.36

Model uncertainty 
of  crack width
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Thank You for your attention!



 

 

Frank Grooteman 

Frank.Grooteman@nlr.nl 

National Aerospace Laboratory NLR, the Netherlands 

 

Solving real engineering problems taking into account uncertainties requires probabilistic methods 

that are robust (can handle multiple and complex limit-states), efficient (can be solved in a minimum 

number of simulations) and accurate in computing small probabilities. Many probabilistic methods 

have been proposed in literature over the past decades. Efficiency, accuracy and robustness are 

contradicting requirements and many methods lack one of these criteria making them less useful. 

 

Two probabilistic methods developed by NLR will be briefly presented that have as much as possible 

the above characteristics. Moreover, a number of constraints will be presented related to aerospace 

problems. For instance, in aerospace industry the probability of failure is 10^-5 or less and in case of 

probabilistic fracture mechanics the limit-state function is discontinuous making it much harder to 

solve requiring a very robust probabilistic method. Apart from the cumulative probability of failure 

the hazard rate often is a required output which in many cases is much harder to compute. 
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Introduction
• Fracture mechanics is a very important design criteria of metal aircraft structure
• Considerable variation is observed in crack growth life time

– Mainly caused by:
• Scatter in initial flaw sizes
• Scatter in loads
• Scatter in (crack growth) material properties

• Variation in lifetime covered by:
– Deterministic Damage Tolerance Analysis

• (Large) initial flaw size + safety factor (2 to 3)
– Probabilistic Structural Risk Analysis

• Scatter taken into account by their distribution 
functions

• Computes the probability of failure (reliability)
• Other application area for probabilistic analysis is composite structures

– More scatter observed in properties than in metals

Time
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k 
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ze

Virkler
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Introduction
• Structural risk analysis (SRA) 

– An evaluation of a potential structural hazard and probability of failure
– Hazard rate h(t) and/or probability of failure F(t) over time

• For new military aircraft SRA are mandatory
– For example F-35, KF-X
– Also applied more and more for existing aircrafts, e.g. F-16
– High level description in MIL-STD-1530 and MIL-STD-882

Inspections
Inspections

6

MIL-STD-1530: Hazard rate
• MIL-STD-1530
– Single Flight Probability of Failure (SFPoF)/Hazard rate h(t)

• Probability of catastrophic failure happening in next flight
– Threshold risk levels

• SFPoF  10-7 is adequate, no action needed
• 10-7 < SFPoF < 10-5 is undesirable
• SFPoF > 10-5 is unacceptable

– Values in between  risk mitigation measures must be taken
• Operational restrictions, inspections, repair, modification, component 

replacement, aircraft retirement
– Note: threshold risk levels are indicative

ℎ 𝑡 =
𝑓 𝑡

1 − 𝐹 𝑡
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MIL-STD-882: Cumulative failure probability
POF 

CATEGORIZATION 

S E V E R I T Y *  

CATASTROPHIC (1) CRITICAL (2) MARGINAL (3) NEGLIGIBLE (4) 

PR
O

BA
BI

LI
TY

 

FREQUENT (A) 

 10-1 
1 3 6 13 

PROBABLE (B) 

 10-2 
2 5 9 16 

OCCASIONAL (C) 

 10-3 
4 7 11 18 

REMOTE (D) 

 10-6 
8 10 14 19 

IMPROBABLE (E) 

< 10-6 
12 15 17 20 

 
 

 HIGH 
CAE Risk Acceptance 

HRI = 1 through 5/6 
MEDIUM 

PM Risk Acceptance 

HRI = 10 through 17 

      

 SERIOUS 
PEO Level Risk Acceptance 

HRI = 6/7 through 9 
LOW 

Risk Acceptance As Directed 

HRI = 18 through 20 

      

* Severity is the worst credible consequence of a hazard in terms of injury, property damage or effect on mission defined below: 

      

(1) Catastrophic:  Class A (damage > $2M / fatality / permanent total disability / loss of aircraft) 

(2) Critical:  Class B ($500K < damage < $2M / permanent partial disability / hospitalization of 5 or more personnel) 

(3) Marginal:  Class C ($50K < damage < $500K / injury results in 1 or more lost workdays) 

(4) Negligible:  All other injury/damage less than Class C 

 

Adaptive Radial Based Importance Sampling (ARBIS)
• Based on Monte-Carlo Simulation outside a 

sphere (Harbitz, RBIS)
• Characteristics

– Much more efficient than MCS
– Accurate

• Converges to the exact answer, in 
general

– Very robust
– opt unknown beforehand

• Very efficient adaptive approach
– NLR in-house developed method*

• Implemented in RAP++
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*Grooteman, F.P.; Adaptive radial-based importance sampling method for structural reliability, Structural Safety, Vol. 30, 
No. 6, pp. 533-542, 2008

Directional Simulation
• Similar as MCS, but now random 

directions are sampled instead of 
points

• Characteristics
– In general, much more efficient 

than MCS
• When number of random 

variables < ±100 
– Accurate

• Converges to the exact answer, 
in general

– Very robust in general
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Adaptive Directional Importance Sampling (ADIS)
• Based on Directional Simulation
• Improved efficiency by means of Importance 

Sampling
– Knowledge required of important regions

• Limited pre-sampling
• Create a Response Surface for sampling 

in unimportant directions
• Performing exact simulations in 

important regions (grey area, small )
– Update Response Surface with this 

information
• Characteristics

– Accurate, efficient and robust in general
– NLR in-house developed method*

• Implemented in RAP++

10

*Grooteman, F.P.; An Adaptive Directional Importance Sampling method for structural reliability, Probabilistic 
Engineering Mechanics, Vol. 26, pp. 134-141, 2011

11

Quantitative Comparison Probabilistic Methods

Method Accuracy Efficiency Robustness 

MCS (LHS) High Low High 

DS (ARBIS) High Medium-low High 

ADIS High-medium High-medium High-medium 

SORM Medium-low High-medium Low 

FORM Low High Low 
 

• Accuracy = Error in probability of failure
• Efficiency = Required number of (expensive) deterministic analyses
• Robustness = Ability to handle complex limit-state(s)

– Multiple failure points, multiple failure functions, noisy/discontinous limit state, ...

• FORM/SORM cannot handle complex limit-states

12

Final remarks
• Robustness

– Failure function can be (highly) discontinuous in fracture mechanics problem
• For instance, in case of variable amplitude loading where failure occurs on the 

same high load cycle for a RV parameter range
• Accuracy

– Low probability of failure, up to 10-9 or below for civil aircraft, 10-6 for military 
aircraft

• Besides cumulative probability F(t) of failure, hazard rate h(t) is often required
• Probability of failure over time required not only final value
• Number of important/significant random variables often limited (< 15)

– Should be determined first by a relatively cheap sensitivity analysis
– Number pf RVs can be higher in case of random field discretization (e.g. 

composites), but correlation is (often) unknown
– Data gathering for each RV will otherwise become even more costly

• Lack of data already biggest problem!
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Final remarks
• Curse-of-dimensionality in case of meta/response surface models

– Even for a Fractional Factorial Designs
– Popular Kriging much worse, requiring (many) internal points as well

• No good choice in general
• Lack of accuracy in case of meta/response surface models

– Small error in meta model yields a large error (order(s) of magnitude) in PoF
– Use of response surface only to determine important limit-state(s)

• The more efficient a reliability method is, the more dependence on previous 
knowledge in each step, the less the possible parallelisation of the algorithm
– High Performance Computing with many (> 1000) processors becomes cheaper 

and cheaper
– Crude MCS or DS the (near) future?
– Commercial software license issues!

NLR Amsterdam
Anthony Fokkerweg 2
1059 CM Amsterdam

p ) +31 88 511 3113  f ) +31 88 511 3210
e ) info@nlr.nl  i ) www.nlr.nl

NLR Marknesse
Voorsterweg 31
8316 PR Marknesse

p ) +31 88 511 4444  f ) +31 88 511 4210
e ) info@nlr.nl  i ) www.nlr.nl

Fully engaged
Netherlands Aerospace Centre

15

Computation of cumulative failure probability

𝑃௙ = 𝑃 𝐺 𝑢 ≤ 0 = ඵ𝑓 𝑢 𝑑𝑢

ீஸ଴

• Solution of  the integral equation is complex
– Multi-dimensional integral equation
– Joint Probability Density Function f(u) unknown in general
– Limit-state G(u)=0 unknown in explicit form in general

• Requires evaluation of an external code, e.g. finite element tool, crack growth 
tool, ...

• Multiple evaluations of the failure function G required
– Search for an efficient probabilistic method that requires a minimum number of 

G-function evaluations (deterministic analyses)
– In general, small probabilities (< 10-3) for engineering problems

• Robust, efficient and accurate probabilistic method needed
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Outline

1. WHAT IS SPECIAL ABOUT 
GEOTECHNICAL ENGINEERING?

2. RECENT PRACTICAL APPLICATIONS,
INCLUDING BAYESIAN UPDATING

3. SUMMARY STATE OF PRACTICE 
AND CHALLENGES

--------------------------------------------------------
4. RFEM FOR SLOPE STABILITY
5. SUBSET SIMULATION WITH RANDOM 

FIELDS
6. INSIGHTS IN FAILURE MODES WITH 

HETEROGENEITY
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Schweckendiek
(‘state of practice’)

Van den Eijnden
(‘state of the art’)

What is special about geotech?
• NATURAL MATERIAL (NO QUALITY CONTROL) 

-> HETEROGENEITY
• LIMITED SITE INVESTIGATION 

-> (EPISTEMIC) UNCERTAINTY

LAB
IN-SITU

GEOPHYSICS

Accuracy
Spatial coverage

 PARTICULARLY AMENABLE TO PROBABILISTIC TREATMENT!
3

Dike slope stability

water level
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a-priori calculated 
“fragility points” (with FORM)

Fragility curves

LEM
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Reliability updating for flood defenses
- Slope stability -

Reliability updating for slope stability of dikes - Approach with fragility curves (background report). 
http://publications.deltares.nl/1230090_033.pdf

Direct method (Bayes’ rule):

failure evidence Even smaller 
probability than Pf!

5

Reliability updating for flood 
defenses - Piping -

Schweckendiek, T., Vrouwenvelder, A.C.W.M., & Calle, E.O F. (2013). 
Updating Piping Reliability with Field Performance Observations. 
Structural Safety (47), 13-23. 6



Ground-structure interaction with FEM

EXPERIENCES
• main structural failure modes can typically be tackled with FORM (wall, anchor)
• simpler approaches often too inaccurate or only for low dimensions (e.g. PEM)
• MCS not an option due to computation time
• Directional Sampling works if model not too heavy (and implicit treatment spatial variability)

MAIN COMUTATIONAL CHALLENGES
• (strong) non-linearities (e.g. transition elastic -> plastic soil behaviour; uplift conditions)
• Overall instability: no calculation response in failure domain

RETAINING WALLS / QUAY WALLS STRUCTURALLY REINFORCED DIKES

State-of-practice in a nutshell
• EC0 AND EC7 PROVISIONS (INCL. OBSERVATIONAL METHOD)
• FEW COUNTRIES SEEM TO EXPLOIT THIS
• RAPIDLY GROWING INTEREST IN NL (DUE TO FLOOD DEFENSES)
• WHAT ARE THE PRACTICAL GEOTECH APPLICATIONS WE DO SEE?

WE NEED:
1. ROBUST AND EFFICIENT COMPUTATIONAL METHODS
2. ‘INTERPRETABLE’ RESULTS!

high-reliability installations 
(e.g. GATE LNG-terminal)

design optimization
(e.g. offshore foundations)

natural hazards
(hurricanes, landslides etc.)

From uncertainty in layers to spatial variability

EARLY EXAMPLE: THE NERLERK UNDERWATER BERM FAILURE

24 January 2018 Reliability Analysis in Geotechnical Engineering - Experiences and Challenges 9

Hicks MA, Onisiphorou C. Stochastic evaluation of static liquefaction in a predominantly dilative sand 
fill. Geotechnique, 55(2), 123-133 (2005) 
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• FINITE ELEMENT MODEL
– NO CONCEPTUAL COMPROMISE ON PHYSICAL MODEL 

FOR NOW:

• TRESCA MATERIAL MODEL 
– LINEAR ELASTIC – PERFECT PLASTIC
– 𝒄 AS MATERIAL PARAMETER

• STATIAL VARIABILITY CHARACTERISED BY COVARIANCE FUNCTION
– STATIONARY RANDOM FIELDS

RFEM for slope reliability analysis (1)

RFEM for slope reliability analysis (2)

24 January 2018 Reliability Analysis in Geotechnical Engineering - Experiences and Challenges 11

FAILURE CRITERIA

Subset simulation and RFEM (1)

24 January 2018 Reliability Analysis in Geotechnical Engineering - Experiences and Challenges 12

• CHARACTERISATION OF RANDOM FIELD 𝒁 USING COVARIANCE MATRIX 𝐂:

𝒁 =  𝐂𝟏/𝟐𝑼,                                   𝐂𝟏/𝟐 = 𝚽𝚲𝟏/𝟐𝚽𝐓

• LIMIT STATE FUNCTION IN 𝑼-SPACE: N-DIMENSIONAL
- POSSIBLE REDUCTION OF PARAMETERS

• ADDRESS FAILURE DOMAIN USING SUBSET SIMULATION DRIVEN BY FS

Eijnden AP van den, Hicks MA. Efficient subset simulation for evaluating the modes of improbable 
slope failure. Computers and Geotechnics, 88, 267-280 (2017) 
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IMPROBABLE SLOPE FAILURE:
– SLOPES WITH KNOWN MEAN STRENGTH (FACTOR F)
– FAILING DUE TO UNCERTAINTY IN SPATIAL VARIABILITY (CONSTANT COV)

PREDOMINANTLY STABLE SLOPES SHOW SHALLOW MODES OF FAILURE

Subset simulation and RFEM (2) Application in parametric analyses (2D)

𝜀௤
௣

> 𝑐

Sliding body
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• ~13 MILLION FEM ANALYSES
• ~8 YEARS OF CPU TIME  (PARALLEL  2 DAYS)

Summary RFEM
1. A MAJOR CHALLENGE IS PROPER MODELLING 

OF HETEROGENEITY AND EPISTEMIC 
UNCERTAINTY (NOT ONLY COMPUTATIONAL)

2. SIMULATIONS REMAIN COMPUTATIONAL VERY 
DEMANDING

3. DIFFICULT TO VERIFY CONVERGENCE OF 
SOLUTION (POSTERIOR)

4. DETAILED 3D ANALYSIS OF SPATIALLY VARIABLE 
SLOPES AT SMALL FAILURE PROBABILITIES 
REMAINS A CHALLENGE

5. SUBSET SIMULATION MOST PROMISING SO 
FAR…

24 January 2018 Reliability Analysis in Geotechnical Engineering - Experiences and Challenges 15
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Reliability assessments of concrete 
structures based on Nonlinear Finite 
Element Analyses: how to codify design 
methods?

Reporting from action group 8 
contributing to the
fib Model Code 2020

Max Hendriks – TU Delft, Netherlands & NTNU, Norway
TNO Workshop Computational challenges in the reliability 
assessment of engineering structures, 24 January 2018, Delft 2

In this presentation

• Introducing the fib and the Model Code

• Issues

• Way forward

3

What is the fib Model code 2020?

• Short name: fib MC2020
• Update of the fib MC2010 with added 

data on “existing concrete structures”
• Will serve as a basis for future codes for 

concrete structures
• For national and international code 

committees, practitioners and 
researchers

4

fib Action Groups

• Focussing on a specific topic/section with 
in the MC2020

• Action group «AG8»: focussing on
section «7.11 Verifications assisted by 
numerical simulations»

5

fib Action Group AG8 

 20 members

A “core team”
– Giorgio Monti (co-convenor) 

– Diego Allaix 

– Morten Engen (technical secretary)

– Max Hendriks (convenor)

6

fib AG8 
Current status of the work

• Wishes for the MC2020 text of 7.11 have 
been investigated.

• Working on specifications for the text. 
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«ISSUES»

8

Model uncertainties

• Defined as the ratio of observed load 
resistance and finite element predictions 
of the load resistance.

• That is, the main application field is 
estimating the load resistance of a 
concrete structure.

9

Model uncertainties

1. There is not one nonlinear finite element 
approach. Many approaches exist with 
different choices for the
– Kinematic equations
– Constitutive equations
– Equilibrium methods & conditions

2. Very often the approaches have not 
documented explicitly

10

Model uncertainties

3. Some finite element models are like 
“virtual experiments” and simulate 
failure. Others model “only” the force 
redistributions and use a “simple” failure 
criterion.

11

Model uncertainties

4. The application field of the models is 
wide.

5. The model uncertainty depends on the 
type of failure mode. That is, it depends 
on the “brittleness” of the failure.

12

Model uncertainties

M. Engen et al. / Structural Safety 64 (2017) 1–8
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Model uncertainties

Rijkswaterstaat technisch document 1016-2:2017, 2017 14

Model uncertainties

6. Mainly based on lab experiments which 
are always idealizations of actual 
structures

7. Hard to unravel from other (material) 
uncertainties

15

Model uncertainties

8. Sometimes based on “between-model 
uncertainty” with 1 experimental outcome 
and multiple model approaches:

(It describes the obtained uncertainty in the 
prediction if a model was selected randomly)

Morten Engen, PhD thesis NTNU, 2017 16

Reliability methods

• Semi-probabilistic «safety formats» 
based on limited calibrations.

17

«WAY FORWARD»

18

Model uncertainties

1. Based on a “within-model uncertainty” 
adopting a fixed modelling approach

Morten Engen, PhD thesis NTNU, 2017
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Model uncertainties

Rijkswaterstaat technisch
document 1016-1,2,3:2017, 2017

2. Use fixed = 
documented modelling 
approaches. 

E.g. based on guidelines 
–or–

on advices from the 
software program 
developers (?)

20

Model uncertainties

3. Provide values per “type of failure 
mode” and per “level of model 
calibration” (???)

4. Provide the possibility to determine the 
model uncertainty of a certain modelling 
approach for a certain application area 
(?)

21

Reliability methods

1. Provide methods based on response 
surfaces (???)
– Attractive from an engineering point of view

– Can be interpreted

2. Provide methods based on calibrated
semi-probabilistic approaches

22

Concluding remark

• Work to do between now and 2020
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