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PREFACE

Aging and deteriorating infrastructure is an urgent issue in all industrialized countries. As the built
environment comprises a substantial part (~80%) of our national wealth it is crucial to address this
issue. Many civil engineering structures are approaching the end of their intended design life, for
example most of our transportation infrastructure has been built in the 1960s and 1970s. Assessing

the reliability of these structures is essential to keep the existing stock in operation.

However, structural reliability and remaining service life assessment of these complex structures can
be a daunting task. The main issue is that these assessments often involve a large number of random
variables (e.g. due to random fields), have computationally expensive physical models (e.g. NL-FEM
models) and have small failure probabilities (1e3 to 1e6). The reliability analysis of complex

structures quickly becomes a computational challenge.

To face this challenge, The Department of Structural Reliability at TNO organized a workshop on this
topic. The aim of the workshop was to bring together researchers, practitioners, and software
developers from all over the world to share experience, learn from each other, and to jointly find

ways of solving these challenges.

These proceedings contain the abstracts and slides of the 11 lectures held during the workshop. The
first half of the lectures dealt with state-of-the-art reliability methods. The second half of the

lectures dealt with the latest developments and challenges in engineering practice.

We believe that the workshop was a great success, with participants form 22 different affiliations
and from 10 different countries; from the field of Civil Engineering and the field of Aerospace
Engineering; from the academia and from the practice.

We would like to thank everyone who contributed to this workshop.

The organizing committee
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SEQUENTIAL SAMPLING APPROACHES FOR
RELIABILITY ASSESSMENT

lason Papaioannou
iason.papaioannou@tum.de

Engineering Risk Analysis Group, Technische Universitét Miinchen

Structural reliability analysis requires estimation of the probability of failure, which is defined
through a potentially high dimensional probability integral. The failure event is expressed in terms of
an (often complex) engineering model with uncertain input. The probability of failure is commonly
estimated with Monte Carlo-based sampling approaches due to their robustness in dealing with
complex numerical models. Although the performance of the Monte Carlo method does not depend
on the dimension of the random variable space, it deteriorates geometrically with decrease of the

target failure probability.

In this talk, a number of advanced sampling methods are discussed that improve the efficiency of
crude Monte Carlo, while maintaining to a certain extent its independency on the number of random
variables. In particular, we discuss methods that perform a sequence of sampling steps with aim at
obtaining samples from a theoretically optimal importance sampling density — the density of the
random variables censored at the failure domain. These methods include subset simulation [1, 2],
sequential importance sampling [3] and cross-entropy importance sampling [4,5]. We focus on the
former two and discuss computational settings that optimize their performance in high dimensional
problems. We additionally discuss the potential of using surrogate or multi-fidelity models within a
sequential approach to enhance computational efficiency. The performance of the methods is

demonstrated with a number of numerical examples in high dimensions.

References:

1] Au, S. K., & Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by
subset simulation. Probabilistic Engineering Mechanics, 16(4), 263-277.

[2] Papaioannou, |., Betz, W., Zwirglmaier, K., & Straub, D. (2015). MCMC algorithms for subset
simulation. Probabilistic Engineering Mechanics, 41, 89-103.

[3] Papaioannou, |., Papadimitriou, C., & Straub, D. (2016). Sequential importance sampling for
structural reliability analysis. Structural safety, 62, 66-75.

4] Wang, Z., & Song, J. (2016). Cross-entropy-based adaptive importance sampling using von
Mises-Fisher mixture for high dimensional reliability analysis. Structural Safety, 59, 42-52.

[5] Papaioannou, I., Geyer, S., & Straub, D. Modified cross-entropy-based importance sampling

with a flexible mixture model. Manuscript.



Sequential sampling approaches for reliability
assessment

TU Delft, 24 January 2018

lason Papaioannou

Engineering Risk Analysis Group, TU Minchen

Estimating the probability of failure

« Models of engineering systems
+ Parameters modeled as random variables
« Enables extrapolation to extreme situations

Reliability analysis
» Random variables X =[X, X, ..., X,]"
Joint PDF:  f(x)

+ Failure condition defined through limit-state function g(x) s.t. /= {g(x)<0}

- Probability of failure: P, =Pr(F)= | f(x)dx

2(x)=0

Reliability analysis
Estimation of rare event probabilities

Pr(F)~10"-10"

Sources: Daniel Straub, Satish Krishnamurthy, ASDFGH

High dimensional inputs

« Systems with large numbers of component B
« Time/space variable inputs !
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Simulation methods
Based on Monte Carlo simulation
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Monte Carlo for reliability analysis

Very inefficient for
small failure
probabilities!!

Importance sampling

Probability of failure

p= %h(x)dx = [ (s <0)whx)dx = E,[ I(g(x) <0)w(x) |
g0 MX R"

Importance sampling function: /(x)

Importance weight function: w(x)=

S
h(x)

Estimate of probability

7,

=k 1(g00< O)W(x)}:"lZI(g(xk) <0w(x,)

5 k=1

Variance of estimate

w2

s

Importance sampling (lll)

Typical choice of IS density

Gaussian density centered at FORM design point ¢(x—x,)
Importance weight function: w(x)= W —0 for nsw
x—

X,)

Reduced efficiency in high dimensions
[Au & Beck 2003, Katafygiotis & Zuev 2007]

Monte Carlo

Probability of failure

po= | seds=[1(gx)<0)f(xdx=E| I(g(x)<0)]

£(x)=0 R"

Indicator function

I(g(x)§0)={ 1 if g(x?so
0  otherwise
Estimate of probability

n

P=E [1(s0 go)]:niZI(g(xk)go)

s k=1

Coefficient of variation of estimate

F

v, - oyl
g, nP,

Var(i’ )

Importance sampling (Il)

Optimal importance sampling density

()= 1(806) £0)(x)

F

S I NS

gx) <0

— g®)=0

X,

Requires the knowledge of P,

Advanced sampling methods

» Line sampling [Hohenbichler & Rackwitz 1988; Koutsourelakis et al. 2004]
» Subset simulation [Au & Beck 2001]
» Asymptotic sampling [Bucher 2009]
» Sequential importance sampling
[Beaurepaire et al. 2013; Papaioannou et al. 2016]
» Cross-entropy based importance sampling
[Rubinstein 2001; Kurtz & Song 2013; Wang & Song 2016]



Sequential sampling approaches

» Sample a sequence of distributions that gradually approximate the desired
distribution

» Sequential sampling for Bayesian analysi
— Annealed importance sampling [Neal 2001]
— Particle filter/Resample-move algorithms [Chopin 2002]
— Sequential Monte Carlo [Del Moral et al. 2004, 2006]
— Transitional MCMC [Ching & Chen 2007; Betz et al. 2016] Sequential sampling approaches for
« Sequential sampling for reliability analysis I’ellablllty analysis
— Subset simulation [Au & Beck 2001]
— Sequential importance sampling
[Beaurepaire et al. 2013; Papaioannou et al. 2016]
— Cross-entropy method
[Rubinstein 2001; Kurtz & Song 2013; Wang & Song 2016]

ical physics

Sequential importance sampling Sequential importance sampling (ll)
* Consider a sequence of distributions {/,(x), /= 1,...,m} such that Estimate /”, with importance sampling and IS density /1, (x)
h(x)= and h(x)=nh,
(=1 (x) %) = () p = [gwds=r, [ 224 e
J J 7 J
()

e Each distribution is known up to a normalizing constant

P (x)
7,(x) —_— [, -E, [w
hix)=L = _(x)dx=E, |w (x)
A AL ORS o)
* We want to sample each distribution /7 (x) and estimate the normalizing constants 7, 7,(x,)

where w (x,)=
’ 7.(x,)

Estimate of ratio of normalizing constants

. P 1<
§ -t -L
s EW,W)
where x, ~h,(x)
Sequential importance sampling (lll) Distribution sequences for reliability analysis

Optimal IS density
Sample each distribution /,(x)

1
b ()= 5-1(8)£0).f(x)
* Obtain weighted samples form /2(x) using samples from /,_,(x) F
Subset simulation [Au & Beck 2001]

Ifx, ~h, (xdhen (x,, w,(x,)) ~ h, (x) Define a sequence of densities:

1,(x.) 1
here w (x,)=———= h(x)=——1,(x)f(x) where F,DFD---DF,=F
where w (x,) () ’ ) 7, w20 i
* Resample (x;,w,(x;)) to obtain uniformly weighted samples of /1,(x) Intermediate failure domain: F, = {g(x) < c/} with ©=¢;>¢ >, =0

e Move the samples applying MCMC with invariant distribution h/(x) Y
2




Illustration

g0=0.1(x,-x,) —%(x, —x)e25  X-NOD

X

Random walk sampler

Proposal density chosen as Gaussian density centered at current state:

q(v|x)=p(v-x)

Acceptance probability for independent f(x)

a(x,v)= I}g ) min{l, ;((I;}

Efficient samplers for high dimensions

Component-wise (single component) Metropolis algorithm [Au & Beck 2001]
Conditional sampling (CS) algorithm [Papaioannou et al. 2015, Au & Patelli 2016]

Metropolis-Hastings algorithm
Metropolis-Hastings algorithm for sampling from /4 (x)c/, (x)f(x)
M-H transition density

PVIN=a(x (v +(1-r(x))8,(v)

Proposal density: g(v|x)

g(v|x") Acceptance probability of candidate:
1-r(x"
-1, (y)mm{l,w}
’ S(x)q(v]x)
Probability that the chain moves
from the current state:
x r(x)= j a(x,v)g(v|x)dv

veR"

Dirac mass atx: &, (v)

Example: Sampling from a Gaussian target

Average acceptance probability vs. dimension

08 - - . .
[x=1
0.7 ——- X=2
P N e X0 =3
s [x0 =4
% o0s¢ 3
7z
T 04 4
—
=03t 4
02t 1
01t 4
o ;
0 10 15 25 30

Number of random variables »n

Low acceptance rate (reduced efficiency) in high dimensions
[Au & Beck 2001, Katafygiotis & Zuev 2007, Papaioannou et al. 2015]

Conditional sampling (CS) algorithm
Choose ¢(. | xo)as the multivariate Gaussian conditional on the current state x,:
a(vx,) = (v=px,.(1-p")1)

where p: correlation coefficient of the current with the candidate state

If /(x) is Gaussian ==$  a(x,,V)= IF/ (v)

Efficiency is independent of the random dimension!

Papaioannou I, Betz W., Zwirgimaier K., Straub D.: MCMC algorithms for subset simulation. Probabilistic Engineering
Mechanics, 41: 89-103



Adaptive CS algorithm [Papaioannou et al. 2015]

Choose p adaptively to match a near-optimal acceptance probability o* = 0.44

j=2 j=3

o

effy o

o3

o

Papaioannou ., Betz W., Zwirgimaier K., Straub D.: MCMC algorithms for subset simulation. Probabilistic Engineering
Mechanics, 41: 89-103

SuS: Effect of the MCMC sampler
1-D diffusion problem:

d dv y dv
= = |=1 0,1 with 0)=0,—| =0
dx(a(z) dx] zefol] vO=0.2

=1

—log,y Py

Papaioannou I, Betz W., Zwirgimaier K., Straub D. (2015). MCMC algorithms for subset simulation. Probabilistic
Engineering Mechanics, 41: 89-103

MCMC sampling for SIS

» Conditional sampling algorithm for high dimensional problems

» Independent Metropolis-Hastings in low to moderate dimensional component
and system reliability problems

Papaioannou I., Papadimitriou C., Straub D. (2016). Sequential importance sampling for structural reliability analysis.
Structural Safety, 62: 66-75.

SuS: Effect of the MCMC sampler

1-D diffusion problem:

d dv . dv
— —[=1 0,1| with 0)=0,—| =0
dx(ﬂ(Z)dx] ) Z€|: ] v(0) e

=1
Log-diffusivity: Gaussian RF

Autocorrelation function:
p(z,z'):exp(—‘z—z"/r); r=0.01
Karhunen-Loéve expansion with 200 terms:
loga(z)=u,, +§0q,\/7 ?,(2)x, X~N(0,1)
=
Spatial domain discretized by 100 piecewise-linear FEs

Limit state function: g(x)=v,_ —v(x,z=1)

Distribution sequences for reliability analysis (Il)
Optimal IS density .
h,(x)= E!(g(x) <0)f(x)

Sequential importance sampling [Beaurepaire et al. 2013; Papaioannou et al. 2016]
Define a sequence of densities:

h](x):%cl)[—%]f(x) where  «©=0,>--->0,>0

safe domain failure domain

Independent Metropolis-Hastings with Gaussian mixture proposal

Gaussian mixture proposal:
K
) =Y po (V.2
i=1

where p,.u,,Z;: are estimated using the weighted samples through application
of the Expectation-Maximization algorithm

o(e.2)

o{.) -

Papaioannou I., Papadimitriou C., Straub D. (2016). Sequential importance sampling for structural reliability analysis.
Structural Safety, 62: 66-75.



lllustration

g(x):o.l(xl _,C:): —%(’ﬂ _x:)+2.5 X ~N(0,I)

lllustration

g(x):O.l(x1 —x:)

lllustration

g(x)zO.l()c1 —x:): -

V2

1

V2

(x|—x:)+2.5

(x-x,)+25  X~NOD)

X ~N(0,T)

g(x)=0

lllustration

g(x):o.l(xl _x2)2 —%(’ﬂ _x:)+2.5 X ~N(0,I)

lllustration

£(0=01(x,—x,) - \/lz(x, -x)+25  X~NQOD

Illustration

g(0)=0.1(x, -x) -%(x, -x)+25  X=NQOD




Illustration

g(x)zO.l(xl —x2)2 _%("1 —x2)+2.5

X~ N(0,I)

Performance in multi-modal failure domains

Series system reliability problem [Waarts 2000]

015 =x) = (50 x,) V2 +3
0. l(x‘—x:)z +(x +x2)/\/5+3

£(X)=min X ~N(0,I)

x,—x2+7/ 2

x,-x+7/\2
o
4
2
x, 0
-
4
-

-6 -4 2 0 2 4 6
x

Performance in high dimensions

Linear limit-state function in high dimensions [Engelund & Rackwitz 1993]

X~ N(0,T)

g =pn-3

Reference value f=3.5: P, =2.33x 10~

Rel. bias vs number of random variables »

CV vs number of random variables n

0.2

0

[GLAREAYA

o
®

100

80

100

Illustration

g(x)zO.l(xl —x2)2 _%("1 —x2)+2.5

X ~N(0,I)

Performance in multi-modal failure domains

Series system reliability problem [Waarts 2000]

01 =x) = (50 x,) V2 +3

amind O15%) + s w) V243 X~N(@©,1)
x,—x2+7/ 2
x,-x+7/\2
Reference value P, =2.2x 107
sSus SIS (K=4) SIS (K=10)
Number of
samples per . . :

IeSeI ”p Mean estimate CV  Mean estimate cv Mean estimate cv
500 227%x107 33% 1.84%x 107 21% 1.57x 1073 30%
1000 221%1073 22% 1.99% 107 13% 1.83% 1073 16%
2000 223%x107* 15% 2.10x 1073 1% 201x107 1%

Performance in high dimensions

Linear limit-state function in high dimensions [Engelund & Rackwitz 1993]

X~ N(0,T)

g =pn-3

Reference value f=3.5: P, =2.33x 10~

sus SIS (CSM-H)
Number of random
variables Mean estimate ov Mean estimate ov
10 234x107 29% 232x 107 41%
100 234%107 28% 229% 107 42%
1000 233x107 28% 227%107 42%




Observations

Subset simulation (SuS)

¢ Allows using only a fraction of samples from each previous distribution in the
sequence

¢ MCMC within SuS does not require burn-in

o Efficient MCMC algorithms allow application to very high-dimensional problems

SIS with smooth transitions

e Allows using all (weighted) samples from each previous distribution in the
sequence to fit optimal MCMC proposals

¢ Has optimal performance in low- to moderate-dimensional problems

Problems of SIS/SuS
e No reliable estimate of the accuracy of the probability estimate exists

e The probability estimate becomes skewed with decrease of the target failure
probability

Approaches for reducing computational cost

«  Multi-level/multi-fidelity methods

Ullmann E., Papaioannou I. (2015). Multilevel estimation of rare events. Journal of L
Quantification, 3: 922-953

Summary

Sequential sampling approaches for reliability analysis in high dimensions

Based on sampling from a sequence of distribution that gradually approach a
target sampling density

SIS with smooth transitions performs well in low to medium dimensional
problems

e SuS remains the optimal choice for high dimensional problems

Approaches for reducing computational cost

« Adaptive surrogate model representations, e.g. polynomial chaos
expansions, artificial neural networks, ...

subsel j+1 ANRE ARREZ

Training data

Giovanis D. G., Papai ., Straub D., V. (2017). Bayesian updating with subset simulation using
artificial neural networks, Comput. Methods Appl. Mech. Eng., 319: 124-145

Bayesian analysis
Application of sampling-based approaches

15r T * - T
x . o . £
i oot Priar
18 3 . ¥ oy a
g .. ar : .
X, B, 3
i " . LR L
sk / " I
Il = e -
Posterior — " TN«
% 05 1 15 2 25 3
X

Straub D., Papaioannou |. (2015). Bayesian updating with structural reliability methods. Journal of Engineering
Mechanics, ASCE, 141(3): 04014134,

Sequential sampling approaches for reliability
assessment

TU Delft, 24 January 2018

lason Papaioannou

Engineering Risk Analysis Group, TU Minchen



ACTIVE LEARNING METHODS FOR
RELIABILITY ANALYSIS OF ENGINEERING
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Introduction

Global framework for uncertainty quantification

Active learning methods for reliability analysis of
engineering systems

B. Sudret

Chair of Risk, Safety and Uncertainty Quantification
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Introduction

Step C: uncertainty propagation

Goal: estimate the uncertainty / variability of the quantities of interest (Qol)
Y = M(X) due to the input uncertainty fx

= Qutput statistics, i.e. mean, standard deviation,
etc.

Mean/std.
py = Ex [M(X)] deviation
oy =Ex [(M(X) = pv)?]

= Distribution of the Qol
Response
PDF

= Probability of exceeding an admissible threshold Probability %

Yadm of R

If
Pr =P (Y > Yodm) PR (A SN

3. Sudret (ETH/RSUQ) Active learning methods for reliability TNO - January 24th, 2018

Introduction

Probability of failure
Definition r

bPr=P({X € Dr}) =P (g (X, M(X)) <0)

[x(z) dx

Pr= /
Dy={wEDx : g(w,M(x))<0}

Features

= Multidimensional integral, whose dimension is equal to the number of basic
input variables M = dim X

= |mplicit domain of integration defined by a condition related to the sign of the
limit state function:

Dy={xecDx: gz, M(z)) <0}

® Failures are (usually) rare events: sought probability in the range 1072 to 10~%

B. Sudret (ETH/RSUQ) TNO — January 24th, 2018

Active learning methods for reliability

Step B Step A Step C

Quantification of Model(s) of the system Uncertainty propagation

sources of uncertainty Assessment criteria

Random variables Computational model Moments

B Probability of failure
}\1‘{\ Response PDF

Step C’

Sensitivity analysis

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models — contributions to structural reliability and stochastic spectral

methods (2007)

B. Sudret (ETH/RSUQ)

Active learning methods for reliability

TNO — January 24th, 2018

Introduction

Limit state function

= For the assessment of the system's performance, failure criteria are defined,
eg. :
Failure < Qol = M(Z) > Guim
Examples:
+ admissible stress / displacements in civil engineering

+ max. temperature in heat transfer problems
+ crack propagation criterion in fracture mechanics

= The failure criterion is cast as a limit state function (performance function)
g: x € Dx — R such that:

g(z, M(x)) <0 Failure domain Dy Failure domain
g (x, M(x)) >0 Safety domain D, By = lers(@) < O
g (x, M(x)) =0 Limit state surface

Safe domain D,

eg g(x) = Guam — M(x)

B. Sudret (ETH/RSUQ) Active learning methods for reliability

Introduction

@ Introduction

@ Gaussian process modelling
Gaussian processes and auto-correlation functions
Best linear unbiased estimator
Estimation of the parameters
Adaptive learning

© Kriging and active learning in structural reliability

@ Applications in structural engineering

B. Sudret (ETH/RSUQ) Active learning methods for reliability TNO - January 24th, 2018



Gaussian process modelling Gaussian process modelling

Surrogate models for uncertainty quantification Ingredients for building a surrogate model

A surrogate model M is an approximation of the original computational model M = Select an experimental design X’ that covers at best o ., s
with the following features: the domain of input parameters: Latin hypercube e L,
. . . - li LHS), low-di ¢ e .
= |t is built from a limited set of runs of the original model M called the sampling (LHS), low-discrepancy sequences o T e,
. . _ @) Ve oo 2
experimental design X = {a: vi=1 ,n} = Run the computational model M onto X" exactly as St e o,
in Monte Carlo simulation - —

= |t assumes some regularity of the model M and some general functional shape
= Smartly post-process the data {X', M(X)} through a learning algorithm

Name Shape Parameters
Polynomial chaos expansions M(zx) = E e U () [ Name Learning method

R acA y Polynomial chaos expansions sparse grid integration, least-squares,

L . r () (0 compressive sensing

Low-rank tensor approximations M(z) = Z b ]._.[Ul (1) b, 2,

=1 iy ’ Low-rank tensor approximations alternate least squares

o . > _ AT, 2
Kriging (a.k.a Gaussian processes) M(z) = . J(@) + Z(z,w) B,o5,0 Kriging maximum likelihood, Bayesian inference
Support vector machines M(z) = a; K(zi,z)+b a,b Support vector machines quadratic programming
i=1

= |t is fast to evaluate

B. Sudret (ETH/RSUQ) Active learning methods for reliability TNO - January 24th, 2018 6 / 46 B. Sudret (ETH/RSUQ) Active learning methods for reliability TNO — January 24th, 2018

Gaussian process modelling ~ Gaussian processes and auto-correlation functions Gaussian process modelling ~ Gaussian processes and auto-correlation functions

Gaussian process modelling Assumptions on the trend and the zero-mean process
Gaussian process modelling (a.k.a. Kriging) assumes that the map y = M(z) is a Prior assumptions are made based on the existing knowledge on the model to
realization of a Gaussian process: surrogate (linearity, smoothness, etc.)

Trend

= Simple Kriging: known constant

P
Y (z,w) = Z Gj fi(x) + o Z(x,w)
j=1
where: = Ordinary Kriging: p = 1, unknown constant [
= f={f;,j=1,...,p}" are predefined (e.g. polynomial) functions which

form the trend or regression part = Universal Kriging: [;'s is a set of e.g. polynomial functions,

eg {fiw)=a""1j=1,...,p}in1D

= B={f, ... ,,ﬁp}T are the regression coefficients

* o is the variance of ¥ (2,w) Type of auto-correlation function of Z(x)
= Z(x,w) is a stationary, zero-mean, unit-variance Gaussian process A family of auto-correlation function R(:; 6) is selected:
E[Z(z,w)] =0 Var [Z(z,w)] =1 Ve eX Cov [Z(w% Z(m’)} =o? R(z,2'; 0)

e.g. square exponential, generalized exponential, Matérn, etc.
The Gaussian measure artificially introduced is different from the
aleatory uncertainty on the model parameters X
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Matérn autocorrelation function (1D) Matérn autocorrelation function
Definition Parameter v controls the regularity (smoothness) of the trajectories
Ri(2,2') = 11 ( o) |z — x/\>u Ko ( o |z — $'|> = The trajectories of such a process are || times differentiable:
27T (v) ¢ ¢ v=1/2 : (C° (continuous, non differentiable)
where v > 1/2 is the shape parameter, ¢ is the scale parameter, I'(-) is the Gamma v=3/2 : (!
function and k., () is the modified Bessel function of the second kind v=5/2 . C?
Properties = When v — +00, Ri(h; v) tends to the square exponential autocorrelation

The values v = 3/2 and v = 5/2 are usually used <h =

Ri(h; v=3/2) = (1+v3h)exp(—V3h)
Ra(hs v =5/2) = (1L+VBh + g h2) exp(—v/5 h)

Autocorrelation function Trajectories
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Gaussian process modelling  Best linear unbiased estimator

Two approaches to Kriging

Data

= Given is an experimental design X = {x1, ... ,@n} and the output of the
computational model y = {y1 = M(x1), ... ,yn = M(xn)}

= We assume that M(x) is a realization of a Gaussian process Y () such that
the values y; = M(x;) are known at the various points {z1, ... , &N}

= Qf interest is the prediction at a new point zo € X, denoted by
Yo = Y (o, w), which will be used as a surrogate M (o)

Yp is obtained as as a conditional Gaussian variable:

Yo=Y (x| Y(21) =y1, ..., Y (@n) =yn)

B. Sudret (ETH/RSUQ)
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Mean predictor

The conditional distribution of Y; given the observations {Y (;) = Yiti_, isa
Gaussian variable: Santner, William & Notz (2003)
v 2

Yo ~ N, 05:)

Surrogate model: mean predictor

wg, = FB+rIR™ (y ¥ 4)

where the regression coefficients 3 are obtained from the generalized
least-square solution:

B=(F'R'F)'F Ry

Properties

= The mean predictor has a regression part fDTﬁ: Zj’f:l E, fi(xo) and a local
correction

= |t interpolates the experimental design:

[l,?, = ”‘?(“”z) =i V:1‘7 eXx

B. Sudret (ETH/RSUQ) TNO — January 24th, 2018
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Gaussian process modelling  Best linear unbiased estimator
Confidence intervals

C=2Conf, mlm‘w\l( )
_— . — S |
= Due to Gaussianity of the predictor o Bxp
Yo ~ N(us ,02 ), one can derive
Yo’ "vo

confidence intervals on the
prediction

= With confidence level (1 — «), e.g.
95%, one gets:

Hey 1.960’9\0 < M(mo) < 5 + 1.960’{;0

= The Kriging predictor is asymptotically consistent:

=N 2
lim JE{(’WYO) } -0
N—oo

when the size of the experimental design N tends to infinity

B. Sudret (ETH/RSUQ) TNO — January 24th, 2018
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Joint distribution of the predictor / observations

= For each point x; € X, Y; = Y (x;) is a Gaussian variable:
P
Yi= > Bifi@)+oZi=fBtoZi  Zi~N(OD)
j=1

= The joint distribution of {Yo, Y1, ... ,YN}T is Gaussian:
Yo A 1
[ SV fo B o2 0
1% Fj ro R
= Correlation matrix R of size (N x N)

= Regression matrix F of size (N X p)

Fij = fj(w:)
i=1...,N,j=1,...,p

Rij = R(zi, x;;0)

= Cross-correlation vector rq of size N

= Vector of regressors fo of size p

fo={fi(zo), ... . fp(mo)}

B. Sudret (ETH/RSUQ)
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Kriging variance

= The Kriging variance reads:
% =E [(1?0 - YD)Z] — o2 (1 R re+ul (FFRT'F) ug)
0
with uo = FTR ™ 7o — fo

= |t is made of two parts:

. g2 (1 —rgR7! 1"0) corresponds to the simple Kriging (when the trend is
known)

= the rest corresponds to the uncertainty due to the estimation of 3 from
the data

= The predictor is interpolating the data in the experimental design:

=2 0 Vi€ X

o o= =
Yi Y(=:)

B. Sudret (ETH/RSUQ) e learning methods for reliability
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@ Gaussian process modelling

Estimation of the parameters

B. Sudret (ETH/RSUQ) Active learning methods for reliability
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Introduction

So far:

= The best linear unbiased estimator assumes that the autocovariance function
o R(x,x';0) is known

In practice:

= A choice is made for the family of autocorrelation function used, e.g.
Gaussian, exponential, Matérn-v, etc.

= The parameters of the covariance function, denoted by (0279), must be
estimated from the data, i.e. the experimental design:

X={x1,...,xN} y={y1 = M(1), ... ,yn = M(zn)}

Maximum likelihood estimation

B. Sudret (ETH/RSUQ)
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Gaussian process modelling  Adaptive learning

One-dimensional example

Original model + Data

M(2) = = siua)|
20f © Exp. design

Computational model

1

s 19 /

-20

x> xsinz for x € [0, 15]

Experimental design

Six points selected in the range [0, 15]
using Monte Carlo simulation:

[ 5 10 15
-

X ={0.6042 4.9958 7.5107 13.2154 13.3407 14.0439}
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Effect of the experimental design

= In an adaptive set up, it is of interest to add points to the experimental design
in regions where the Kriging variance is large

50

N
[=)

w
=]

N
=]

Kriging variance

.
o
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Maximum likelihood estimation in Kriging

= Assuming that data follows a joint Gaussian distribution Y ~ Nn(F3, R(6))
the negative log-likelihood reads:

o5 L (8, 0% 81 y) = 5 (y - FA)TRE) 'y FH) + 5 log(2m)
N 2 1
+ > log (a ) + 5 log (det R(0))

Solution:

B(6) = (F'R(6)'F)'F'R(0) 'y
~ 1 ~ B ~
02(0) =5 (y—F-B) RO (y-Fp)
= Minimizing (—logL) is equivalent to minimizing the reduced likelihood
function

$(0) = 02(8) det R(9)/N

B. Sudret (ETH/RSUQ) Active learning methods for reliability TNO - January 24th, 2018
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Kriging predictor

18 / 46

Trend.Type = 'ordinary' ;
Covariance.Type = 'matern-5_2';
EstimMethod = 'ML';
Optim.Method = 'BFGS';

Ordinary Kriging
Matérn 5/2
Maximum likelihood
BFGS algorithm

ENENENEN

CZ2Conf, interval

20 —M(zx) = z sin(z)
Exp.design
——Kriging predictor|
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Sequential updating

20 / 46

CZ2Conf, interval
) = x sin(x

Exp. design

4 Add. point

——Updated predictor
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Kriging and active learning in structural reliability

QOutline

© Kriging and active learning in structural reliability
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Confidence bounds on the probability of failure

Shifted failure domains

Dubourg et al. , Struct. Mult. Opt. (2011)

22 / 46

= Let us define a confidence level (1 —a) and ki—a = ®~(1 — @/2), i.e. 1.96 if

1—a=95%, and:
’D‘/. ={x € Dx : pg(x) +ki—aoy(z) <0}
Df ={x € Dx : py(x) — k1o 0(z) <0}

o = 95%):

= Ifxe D(} it belongs to the true failure domain with a 50% chance
s Ifxe D; it belongs to the true failure domain with 95% chance:
conservative estimation

= Interpretation (1

Bounds on the probability of failure

D, CDyCDf <
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How to improve the results?

Heuristics

= The Monte Carlo estimate of Py reads:

M=

N
Pr=5 > Ipp(@r)~7 ) Loo (@)
k=1

=
I

1
= The Kriging-based prediction is accurate when:

1Df;(wk) =1p,(zx) for almost all @k

i.e. if ug(x) is of the same sign as g(x) for almost all sample points

Ensure that the mean predictor p;() classifies properly the MCS
samples according to the sign of g(z)

B. Sudret (ETH/RSUQ) Active learning methods for reliability TNO — January 24th, 2018
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Use of Kriging for structural reliability analysis

= From a given experimental design X' = {w(l), ,w(")}, Kriging yields a
mean predictor pg(x) and the Kriging variance () of the limit state
function g

* The mean predictor is substituted for the “true” limit state function, defining

the surrogate failure domain
Ds° = {® € Dx : 11 (x) <0}

= The probability of failure is approximated by:

Kaymaz, Struc. Safety (2005)

P =P, (X) < 0] :_/;fo(m)dm:]z [10y(x)]

= Monte Carlo simulation can be used on the surrogate model:

Active learning methods for reliability
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Example: hat function

Problem statement
g(x) =20 — (1 — w2)2 —8(x1+ a2 — 4)3

where X, X» ~ N(0,1)

B
4 = Ref. solution:
2 Pr=1.07-10""*

True limit state e

Moo —Meaan prediction
o Lower hound
— Upper bound x + /

+

= Kriging surrogate:

2 i Py =770-10°
* + 0 4
o ot Pf=443-10
- * Pf=552.10""
& «
£ 4 -2 0 2 4 L]
X
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Adaptive Kriging for structural reliability

Procedure

= Start from an initial experimental design X" and a Kriging surrogate

= At each iteration:

= Select the next point(s) to be added to X: enrichment criterion
= Update the Kriging surrogate

= Compute an estimation of P; and bounds

= Check convergence

B. Sudret (ETH/RSUQ) TNO — January 24th, 2018
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Adaptive Kriging for reliability analysis

Kriging and active learning in structural reliability

Example: hat function

Algorithm 1: Adaptive Kriging for reliability analysis

1= Initialization

2: Initial experimental design ED = {X(l), Coox™y

3: Monte Carlo sample X = {1, ... ,xn}

4. while NotConverged do

5: Train a Kriging model ./\7 on the current experimental design
6: Compute the probability of failure [—:’}), and its bounds [[—:’f’, T:’;r] using ./(/l\
7 if (P} — P;)/P) < TOL then

8: NotConverged = FALSE

9 else
10: Evaluate the learning function LF on X
11 Compute the next ED point: x* = arg mingex LI"(x)
12: Update the experimental design: €D + ED U {x*}

13: end

14: end

15: Return Probability of failure ﬁ? and confidence interval [ﬁ_ , P/T]

T L ¥ T
+ @ N °
$N0 /\ °
. v
+ N + °l
+ + + +
= = 0 = o
+ . +
. + B
- + -
P P PR
+ . +
h l h X h X

Lower bound D;

Upper bound D;r

5 5 4 2 2 4
X X

Limit-state margin Probability of misclassification Additional samples

B. Sudret (ETH/RSUQ)
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Different enrichment criteria
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Learning function U(x)

Requirements

= It shall be based on the available information: (u;(x), oy(x))
= |t shall favor new points in the vicinity of the limit state surface

= |f possible, it shall yield the best /K points when distributed computing is
available

Different enrichment criteria

= Margin indicator function Ph.D Deheeger (2008); Bourinet et al. , Struc. Safety (2011)
= Margin classification function Ph.D Dubourg (2011); Dubourg et al. , PEM (2013)
" Learning function U Ph.D Echard (2012); Echard & Gayton, RESS (2011)
= Expected feasibility function

Bichon et al. , AIAA (2008); RESS (2011)

= Stepwise uncertainty reduction (SUR)

Bect et al. , Stat. Comput. (2012)

B. Sudret (ETH/RSUQ)
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Comparison of the enrichment criteria

Optimization of the enrichment crite-
rion
x{; = arg min U(z
U gacE'Dx (z)

Requires to solve a complex optimization
problem in each iteration

Learning function U
Discrete optimization over a large Monte Carlo sample X = {1, ... , &, }
xy = arg xlnin {U(z1), ..., U(zn)}
i=1,..,n

Echard, B., Gayton, N. & Lemaire, M. AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation, Structural

Safety (2011)

Definition
= The learning function [/ is defined by:

Echard et al. (2011)

Interpretation

= |t describes the distance of the mean predictor /15 to zero in terms of a
number of Kriging standard deviations o

= A small value of U(x) means that:

= p5(x) = 0: @ is close to the limit state surface
= and / or o;(x) >> 0: the uncertainty in the prediction at point « is large

= The probability of misclassification of a point & is equal to ®(—U(x))

Bect et al. , Stat. Comput. (2012)
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1D Application example - U function

Limit state function: g(x) =5 —a sinx

Iteration: 5
20 T .

0 5 10 15

B. Sudret (ETH/RSUQ)
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PC-Kriging Series system

Schobi et al. , ASCE J. Risk Unc. (2016)
SERob & Sudre 1JUQ (2018) Kersaudy et ot 3. Comp. Phvs (2015) Consider the system reliability analysis defined by:

Heuristics: Combine polynomial chaos expansions (PCE) and Kriging

= PCE approximates the global behaviour of the computational model N2 witas —
340.1(x1 —x2) NG _—
= Kriging allows for local interpolation and provides a local error estimate 34 0.1 (x1 —2)? + Il\};z L A
g(x) = min . 1
: P : : (=) (w1 —w2) + % ‘ s
Universal Kriging model with a sparse PC expansion as a trend s o =
(2 —a1) + 7 . o =
M(@) ~ M (@) = > " aatpa(@) + 0° % (@,w) where X1, Xz ~ N (0,1)
acA
= Initial design: LHS of size 12 (transformed into
PC-Kriging calibration the standard normal space)
= Sequential PC-Kriging: least-angle regression (LAR) detects a sparse basis, = In each iteration, one point is added (maximize
then PCE coefficients are calibrated together with the auto-correlation the probability of missclassification)

parameters

= Optimized PC-Kriging: universal Kriging models are calibrated at each step of

LAR = The mean predictor 1 ;; () is used, as well as the bounds /1 & (z) =+ 20 1 ()

so as to get bounds on Ij: 15; < 1510 < P;r
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Results with classical Kriging Results with PC Kriging

=)

= 2 40 B
itarations itarations
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Elastic truss

Structural model Blatman & Sudret (2011)
= 10 independent variables:

e 4 describing the bars properties

l l I | l 5 l i e 6 describing the loads
WMA l = Response quantity: maximum
. v I ,Q,

deflection U

= Reliability analysis:

P =P U > tim)

@ Applications in structural engineering Probabilistic model

Variable Distribution mean CoV
Hor. bars cross sectionA; [m] Lognormal 0.002 0.10
Oblique bars cross section A2 [m]  Lognormal 0.001 0.10
Young's moduli E, E> [MPa] Lognormal 210,000 0.10
Loads Py, ..., Ps [KN] Gumbel 50 0.15

B. Sudret (ETH/RSUQ) Active learning methods for reliability TNO — January 24th, 2018 37 / 46 B. Sudret (ETH/RSUQ) Active learning methods for reliability TNO — January 24th, 2018



Applications in structural engineering

Results

Applications in structural engineering

Frame structure

Uagm  Method  Enrichment Py (CoV [Fy]) s Niot
10cm MC - 4.29-1072 (0.5 %) 1.72 10°
FORM - 2.81-10 2 1.91 251
OK single 4.32-1072 1.71  12+135 =147
OK K=6 4.31-1072 1.72 12+26-6 =168
12cm  MC - 1.55-107% (2.5 %) 2.96 10°
FORM - 7.57-10 4 3.17 236
OK single 1.53-1073 2.96 124164 =176
OK K=6 1.53-1073 296 12+27-6=174
14cm MC - 3.6-107° (16.7 %) 3.97 10°
FORM - 1.29.107° 4.21 231
OK single 3.7-107° 3.96 12+110=122
OK K=6 3.4.107° 3.99 12+27-6=174
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REIIES

Uadm  Method  Enrichment Py (CoV [Py]) Jé] Neot
5cm  Ref. - 154-1073 (1 %) 296 41'941
FORM - 1.01-10 2 (-) 3.08 241
oK single 148107 (3.7 %) 2.97 390

| hﬁ”'l’l | 'H;- . vw-‘

|
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www.uqlab.com

FRORARILIETIE INPIT MO

MOnELNG T TS

FELIARILITY ANATYESS (RARD FVINT ESTIMATION)

= Saaran Car
g Sseling

rralazion (ML)
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Structural model

Blatman & Sudret, PEM, (2010)

. G m,

W " W

Probabilistic model
= 21 correlated variables (3 loads, 2 Young's moduli, 8 cross-section properties)
using a Gaussian copula (Nataf transform)
= Reliability analysis (max. horizontal displacement):
Py =P (U > wim) Uim = 5 cm
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Conclusions

Estimating low probabilities of failure in high-dimensional problems requires
more refined algorithms than plain MCS

Recent research on surrogate models (e.g. Kriging) and active learning has
brought new extremely efficient algorithms

Active learning has also been recently developed using bootstrap using

polynomial chaos expansions as surrogates. Marelli & Sudret, ICASP (2017); Struc. Safety (2018)

Accurate estimations of P;’'s (not of 5 !) are obtained with ©(100) runs of
the computer code independently of their magnitude

All the presented algorithms are available in the general-purpose uncertainty
quantification software UQLab
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UQLab: The Uncertainty Quantification Laboratory

ATTIY

http://www.uqlab.com UQLab

= Release of V0.9 on July 1st, 2015; Country # licences
V0.92 on March 1st, 2016 United States 132
= Release of V1.0 on April 28th, 2017 France 76
UQLabCore + Modules Switzerland 66
= 1140 licences granted, 670 active, China 62
57 countries Germany 46
= Presentations at summer schools in United Kingdom 46
Germany (Weimar, Berlin, Ital 2%
Magdeburg) in summer 2016 and ta-y
2017, at SIAM UQ 2016, India 15
UNCECOMP 2017, etc. Canada 15
Iran 13
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UQLab users Questions ?

The Uncertainty
Quantification
Laboratory

www.uqlab.com
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EFFICIENT MONTE CARLO ALGORITHMS
FOR SOLVING RELIABILITY PROBLEMS

Edoardo Patelli
edoardo.patelli@liverpool.ac.uk

Institute for Risk and Uncertainty, University of Liverpool, UK

Assessing risk quantitatively requires the quantification of the probability of occurrence of a specific
event by properly propagating the uncertainty through the model that predicts the quantities of
interest. The estimation of small probabilities of failure from computer simulations is a classical
problem in engineering. In principle, rare failure events can be investigated through Monte Carlo
simulation. However, this is computationally prohibitive for complex systems because it requires a

large number of samples to obtain one failure sample.

Advanced Monte Carlo methods aim at estimating rare failure probabilities more effi- ciently than
direct Monte Carlo. Unfortunately, high dimension and model complexity make it extremely difficult
to improve the efficiency of Monte Carlo algorithms purely based on prior knowledge, leaving

algorithms that adapt the generation of samples during simulation the only choice.

Importance Sampling [3], Subset Simulation [1] and Line Sampling [2] algorithms have become
popular methods to solve it, thanks to its robustness in application and still savings in the number of
simulations to achieve a given accuracy of estimation for rare events, compared to many other
Monte Carlo approaches. Some recent advancement and numerical implementation [4] of these

algorithms will be presented.

References

[1] Siu Kui Au and Edoardo Patelli. Subset simulation in finite-infinite dimensional space.
Reliability Engineering & System safety, 148:66—77, 2016.

[2] Marco de Angelis, Edoardo Patelli, and Michael Beer. Advanced line sampling for efficient
robust reliability analysis. Structural safety, 52:170-182, 2015.

[3] Marco de Angelis, Edoardo Patelli, and Michael Beer. Forced monte carlo simulation strategy
for the design of maintenance plans with multiple inspections. ASCE-ASME Journal of Risk
and Uncertainty in Engineering Systems. Part A: Civil Engineering, page D4016001, 2016.

[4] Edoardo Patelli, Matteo Broggi, Silva Tolo, and Jonathan Sadeghi. Cossan software a
multidisciplinary and collaborative software for uncertainty quantication. In 2nd
International Conference on Uncertainty Quantification in Computational Sciences and

Engineering, volume Eccomas Proceedia ID: 5364, pages 212—-224, 2017.



The Risk Institute  Introduction

COMPUTATIONAL CHALLENGES IN THE RELIABILITY ASSESSMENT of : : :
ENGINEERING STRUCTURES Institute for Risk and Uncertainty

www.riskinstitute.uk
Efficient Monte_ Ca_r{o algorithms for solving Unique national centre of multidisciplinary excellence
reliability problems @ Risk analysis and uncertainty quantification and modelling
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and resilience

L T

Edoardo Patelli NIRRT D E 3y

E: edoardo.patelli@liverpool.ac.uk TTVER POV Institute for Risk :

W Soaraopateli@live LIVERPOOL | mitiherai — ;

T: +44 01517944079 AMEMBER OF THE RUSSELL GROUP

Edoardo Patelli University of Liverpool 26 January 2018 -2-

Virtual Engineering Centre Centre for Doctorate Training (CDT)
www.virtualengineeringcentre.com www.liv.ac.uk/risk-and-uncertainty-cdt

Centre for Doctoral Training on Quantification and Management of

B Advanced modelling, simulation and 3D immersive ) ordl '
Risk & Uncertainty in Complex Systems & Environments

visualisation capabilities and support

@ Access to the UK’s number one supercomputer (Blue Joule - Highlights
STFC Hartree Centre), the world’s largest dedicated to @ 80+ students (5 cohorts)

software development .
P @ 36 Industrial Partners

@ 5.8 Million Pounds in Funding
@ Meeting the needs of industry
@ Throughput of future leaders

Edoardo Patelli University of Liverpool 26 January 2018 -3 - Edoardo Patelli University of Liverpool 26 January 2018 -4 -

Outline Modelling and Design

. Virtual (numerical) Prototypes
0 Introduction @ Very accurate deterministic solvers
& @ Advanced modelling tools
c @ Geometry, meshing, static and dynamic analysis,

fluid/structure interaction, crack propagation, ballistic impact

Edoardo Patelli University of Liverpool 26 January 2018 -5 - Edoardo Patelli University of Liverpool 26 January 2018 -6 -



Introduction | Background Introduction  Background

Risk is often misestimated Questions to be answered
@ Models are deterministic without incorporating any measure @ How are the uncertainties modelled?
of uncertainty (Columbia accident report) '

B Inadequate assessment of uncertainties, unjustified @ What is the variability of the quantities of interest?
assumptions (NASA-STD-7009)
@ Looking for the “black swan” (e.g. Fukushima)

@ How does the uncertainty affect the performance of the
model/system?

@ Is the uncertainty of the prediction within acceptable bounds?

Edoardo Patelli

University of Liverpool

26 January 2018 -7 - Edoardo Patelli University of Liverpool 26 January 2018 -8 -

Introduction  Background Introduction  Background

Questions to be answered Questions to be answered

@ How are the uncertainties modelled? @ How are the uncertainties modelled?
@ What is the variability of the quantities of interest? @ What is the variability of the quantities of interest?

= Answers by uncertainty characterisation ) = Answers by uncertainty characterisation )
@ How does the uncertainty affect the performance of the @ How does the uncertainty affect the performance of the
model/system? model/system?

@ Is the uncertainty of the prediction within acceptable bounds? @ Is the uncertainty of the prediction within acceptable bounds?

= Answers by uncertainty quantification |

Edoardo Patelli University of Liverpool

26 January 2018 -8- Edoardo Patelli

University of Liverpool 26 January 2018 -8 -

Introduction | Background

Introduction | Background

Challenges

Computational cost of the analysis

Challenges

Computational cost of the analysis

Y Deterministic Analysis ["" Deterministic Analysis r?.
“% Rx TN “% Rx TN
[~ — S »s  Stochastic Analysis %
|+ — R
— Y i e
e EEERET T I e o e ad

Edoardo Patelli University of Liverpool
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Stochastic analysis Stochastic analysis

Requirements Requirements

Efficient analysis requires:
@ High Performance Computing
@ Advanced simulation methods

Efficient analysis requires:
@ High Performance Computing
@ Advanced simulation methods

Improvement of efficiency

Overall Improvement

Time (yearsj

Computational modelling is the third pillar of scientific research |

Edoardo Patelli University of Liverpool 26 January 2018 - 10 - Edoardo Patelli University of Liverpool 26 January 2018 - 10 -

Reliability Analysis Performance function g(Xi, -+, Xj)
Describe the status of the system
The ability of a system or component to perform its required
functions under stated conditions for a specified period of time. o, %) >0 e
Reliability is a probability | @ Failure domain: g < 0 o o xg <0

@ Safe domain: g > 0 .

%0 @ Limit State Function:
R(t):Pr{T>t}:/ f(X) dX g(Xt,--- Xp) =0
t (N — 1 dimension surface)

where f(X) is the failure probability density function and ¢ is the

length of the period of time X
Model must be evaluated to determine if X ¢ F

Edoardo Patelli University of Liverpool 26 January 2018 - 11 - Edoardo Patelli University of Liverpool 26 January 2018 -12-

Structural reliability problem Which tool to use?
Challenges

Pi=PlE X)) = [ [ fux)ax
. 9(X)<0

Exact solution of this integral is possible only with multivariate i High-dimensional (n > 30, 40)
normal random variables and linear limit state functions i Multiple failure modes: Py = P(¢(X)) (system reliability)

i Small failure probabilities: Py < 10-#4,10-°

@ Approximated methods (FORM, SORMetc.. )
@ Monte Carlo simulation
@ Important sampling, Line sampling, Subset simulation

Edoardo Patelli University of Liverpool 26 January 2018 -13 - Edoardo Patelli University of Liverpool 26 January 2018 - 14 -



Computational methods | Approximate methods Computational methods | Approximate methods

Outline

e Computational methods
@ Approximate methods

Safety Margin

Fundamental problem

For normal random variables and linear performance function
@ X~ N(:U‘Xwaxl)
® g(x) = a + 21, ax;

M ~ N(pw. o)

(remember linear combination of normally distributed random
variables)

n 2 n 22 n n
% = . ; = A ; E . § L 0:8iQiTiO
pM =&+ :,=1 aillx;, Oy > :1=1 agoy, + 2 i j=1.j+i Pi@igj0i0]
Edoardo Patelli University of Liverpool 26 January 2018 - 15- Edoardo Patelli University of Liverpool 26 January 2018 - 16 -

Safety Margin
Fundamental problem
For normal random variables and linear performance function
@ X ~ N(ILLXV"O-XI)
® g(x) = a0+ X7 ax;
@ M =D - C = g(x) is called safety margin
M ~ N(pm, o3y)
(remember linear combination of normally distributed random
variables)
[t =80+ Y iy @iftx, O = Doiq @05 Do Do i PO

Edoardo Patell

16-

Reliability index 3

Analytical method

B = pum/om

Edoardo Patelli

University of Liverpool

26 January 2018

University of Liverpool 26 January 2018 -17 -

Computational methods  Approximate methods Computational methods  Approximate methods

Reliability index

Analytical method
B=um/om
By transforming the variables in the standard normal space U
@ Probability of failure
Py = P(M < 0) = P(uuy — Uoy < 0) = P(Ug _%)
® P; = ¢(—;3) where ¢(-) is the CDF of a U

Edoardo Patell

17-

Reliability index

Analytical method

B=um/om
By transforming the variables in the standard normal space U
@ Probability of failure
P = P(M < 0) = P(uuy — Uoy < 0) = P(Ug _%)
® P; = ¢(—p3) where ¢(-) is the CDF of a U

Geometrical interpretation

Safety index 3 represents the number of standard deviation by
which the mean value of the safety margin M exceeds zero

Edoardo Patelli

University of Liverpool

26 January 2018

University of Liverpool 26 January 2018 -17-



Computational methods  Approximate methods Computational methods  Approximate methods
Reliability index Reliability index and Design Point
Geometrical Interpretation/1 Smallest distance from the oriain of the standard normal space with the limit state function
uy
So (m) :
<——— Failure 4 Safe———»
glwp=0
il 1wy
UAI’ aN’
/ > m Design Point or
Most likely failure
Hy :
point
Edoardo Patelli University of Liverpool 26 January 2018 -18 - Edoardo Patelli University of Liverpool 26 January 2018 -19 -
First Order Reliability Method (FORM) First Order Reliability Method (FORM)
Linearization in Standard Normal Space Applicability and limitation
@ Transform Random Variables in Standard Normal Variables i High-dimensional: No*!
@ Identify the closed point of the limit state function to the origin ii Multiple failure modes: Possible™
(Most Probable Point) iii Small failure probabilities: Yes
@ 3= minye(gw)-0y\/ i UF
. . i - * Valdebenito, M.; Pradlwarter, H. & Schuéller, G. The Role of the Design Point for Calculating
@ The distance 3 gives an approximate value of the probability Failure Probabilities in view of Dimensionality and Structural Non Linearities, Structural Safety,
of failure 2010, 32, 101-111

* It will be explained later

Method proposed by Hasofer and Lind in 1974

Edoardo Patelli University of Liverpool 26 January 2018 -20 - Edoardo Patelli University of Liverpool 26 January 2018 -21 -

Outline Monte Carlo method
U Evaluation of Definite Integrals

e Computational methods

: G- / g(x)f(x)dx
@ Monte Carlo method

2 X can be seen as a random variable;
] f(x) has characteristic of a probability density function — g(x) is
] also a random variable.

; Elg(x)] = [ 9)f(x)ax = G Varlg(x)] = Elg?(x)] — G°

Edoardo Patelli University of Liverpool 26 January 2018 -22- Edoardo Patelli University of Liverpool 26 January 2018 -23 -



Computational methods Monte Carlo method Computational methods Monte Carlo method

Failure quantification

Demand  Capocity

Monte Carlo darts method

N
6= [ gtax= [ gl . o .. Pr= [120 0 x5 371X

Failure

@ Generate sample N points X; from fx(x)
@ Evaluate g(x;) (prize)

0 — Xes§ @ Computed expected prize

IF(X) =

1 < XeF

Edoardo Patell University of Liverpool

26 January 2018 -24 - Edoardo Patelli University of Liverpool 26 January 2018 - 25 -
Monte Carlo simulation Monte Carlo simulation

Applicability and limitation

@ Always working

) ) i High-dimensional: Yes
@ Provide the exact solution for N — oo " . . ]
) . i Multiple failure modes: Yes
B Does not required any prior knowledge . e N
L ] iii Small failure probabilities: usually not
@ Accuracy N « 5, (independent of number of variables)

@ Infeasible for expensive models and low Pf T Yes for “non-expensive” models (or if surrogate models are used)

Edoardo Patelli University of Liverpool

26 January 2018 - 26 -

Edoardo Patelli University of Liverpool 26 January 2018 -27 -

Computational methods  Importance sampling Computational methods  Importance sampling

Outline Variance reduction technique

[ R ] Motivation

e Computational methods if f(x) is large when g(x) is small (and

vice-versa) £(x) g(x)
‘ Large error estimator
@ Importance sampling Var[Gy] = y (E [¢°(x)] — G°)
[;1‘ E
( N

Edoardo Patelli University of Liverpool

26 January 2018 - 28 -
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Computational methods | Importance sampling

Variance reduction technique Variance reduction technique
Motivation

Monte Carlo biased dart game

if f(x) is large when g(x) is small (and

vice-versa) £00 a(x) G= /g(x)f(x)dx = / g(:z;()x) fi(x)dx = /91 (x)fi (x)dx
Large error estimator ’

Var[Gy] = 4 (E [¢3(x)] — G?)

Y

A different function f;(x) can be used instead of f(x)

o [ [10

g hxak = [ gi0n(ax

26 January 2018 -29 -

Computational methods  Importance sampling

Variance reduction technique Variance reduction technique
Monte Carlo biased dart game

Monte Carlo biased dart game

G~ [ gredx— [ g‘;‘gff)") h0dx ~ [ g1(0f ()0 G~ [ gredx— [ g‘;‘gff)") h0dx — [ g1(0f ()0
@ Sample from X ~ fi(x) @ Sample from X ~ fi(x)

. f(x

@ Collect prize g = 1(—Xg(x)

S|~

Edoardo Patell

University of Liverpool

26 January 2018 -30 -
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Computational methods

Importance sampling

Variance reduction technique Importance Sampling
Monte Carlo biased dart game

Advanced Monte Carlo Simulation
G- / g(X)F(X)dx = / g(;:g)f( ()x) f(X)dx = / 91 ()i (x)dx

P; = /]I;(x) fx(x) dx i
@ Sample from X ~ fi(x)
@ Collect prize gy = %g(x)
@ Estimate Giy = 11\1’21: 91(x)

Edoardo Patell

University of Liverpool

26 January 2018 -30 - Edoardo Patelli University of Liverpool

26 January 2018 -31-



Importance Sampling

Advanced Monte Carlo Simulation

Importance Sampling
Advanced Monte Carlo Simulation
f
Pr= [ 1203 b))

Computational methods | Importance sampling Computational methods | Importance sampling
P = / Ix(x) f(X) dx
h

Pr = /]I;(x) fx(x) dx

i
fx(x
Pr= [ 12000 et S0

26 January 2018

31 -

L1
- _ (k) (k)
Pf—N;Ef(X Jw(X*)
Importance sampling

wix] -
X,
Edoardo Patelli University of Liverpool 26 January 2018 - 31 -
Computational methods  Importance sampling Computational methods  Line sampling:
Applicability and limitation

Outline

Requires prior information of the failure region ;

C . . . e Computational methods

i High-dimensional: Possible but difficult * - P

i Multiple failure modes: Yes * o

i Small failure probabilities: Yes g
+ Difficult to define importance sampling density
* Patelli, E.; Pradlwarter, H. J. & Schuéller, G. I. On Multinormal Integrals by Importance
Sampling for Parallel System Reliability Structural Safety, 2011, 33, 1-7

Edoardo Patell

* Mahadevan, S. & Raghothamachar, P. Adaptive simulation for system reliability analysis of
large structures Computers & Structures, 2000, 77, 725 - 734

é Line sampling

University of Liverpool

2
@

26 January 2018

S32-
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Line sampling

Advanced Monte Carlo simulation

@ Based on the linearisation of limit state function

@ It can be see and a weighed average of FORM

Some maths

Line Sampling
@ Areas with larger mass density contribute most

Pr = [ _Tx(u) hy(u) du, hy(u) is invariant to rotation of the
coordinate axes. Hence,

Hafe Domaln

@l Tplen) =00 =

Diewsign Poant

o) o0
Fr= / /
—oc —
Failure Dowain
7 = giTwlr) <l
- ~%
T i Tatal)
FORM Approximatin
Edoardo Patelli

n
tu)oun)dus ) [T otwlots
oo i=2
uy can be interpreted as “important direction” pointing towards the
failure region: a € R”

26 January 2018

oo

Pe= | ([ trtwotaraa)

ﬁ o(u;)du;

i=2
University of Liverpool

26 January 2018

-35



Computational methods | Line sampling Computational methods | Line sampling

Line Sampling Line Sampling
Some maths (cont) Procedure (Working in Standard Normal Space)

ut = {0, uz.n} lies on the hyperplane orthogonal .

Identify direction

. o0 . Limit State Surface
w(u ):/ Ir(u) 6(a) da ~ (—|c*]) :
J =00 o
-
¢ smallest value of o where Ix(u) steps from 0 to 1 L
w(ut) is a measure of likelihood for the variable u* to be in the 2
failure domain N G
. 1 —
Pr=—% o(—|c"
= 2 e le)
i=1
Edoardo Patelli University of Liverpool 26 January 2018 - 36 - Edoardo Patelli University of Liverpool 26 January 2018 - 37 -
Computaional mihods ___Line samplng
Line Sampling Line Sampling
Procedure (Working in Standard Normal Space) Procedure (Working in Standard Normal Space)
@ |dentify direction @ |dentify direction
@ Samples in the hyperplane S @ Samples in the hyperplane S
& @ For each points X* generate

parallel lines Lins sampe

X

e

Edoardo Patelli University of Liverpool 26 January 2018 - 37 - Edoardo Patelli University of Liverpool 26 January 2018 - 37 -

Line Sampling Line Sampling
Procedure (Working in Standard Normal Space) Procedure (Working in Standard Normal Space)
@ Identify direction o @ Identify direction a

B Samples in the hyperplane S+

@ For each points X* generate
parallel lines

@ Evaluate function along lines

B Samples in the hyperplane S+

@ For each points X* generate
parallel lines Sa

@ Evaluate function along lines
@ |dentify intersection with limit state

Line sample
(L4 4 e

Intersection
w/ LSF

Edoardo Patelli University of Liverpool 26 January 2018 -37 - Edoardo Patelli University of Liverpool 26 January 2018 -37 -



[

Line sampling

Line Sampling

Procedure (Working in Standard Normal Space)

@ |dentify direction
@ Samples in the hyperplane St

@ For each points X* generate
parallel lines

@ Evaluate function along lines
@ |dentify intersection with limit state
@ Compute first order reliability for

Computational methods | Line sampling

Line Sampling

Features

B Efficient approach (samples
required are independent of the
failure probability)

@ Efficient in high dimensional space

@ Requires an approximate direction
pointing towards failure region

@ Might not perform well with
strongly non-linear performance

each line function
Edoardo Patelli University of Liverpool 26 January 2018  -37 - Edoardo Patelli University of Liverpool 26 January 2018  -38 -
Advanced Line Sampling Advanced Line Sampling
Line search Line search
Strategy Strategy
@ Identify ¢/ using quasi @ Identify ¢/ using quasi
Newton method =y Newton method
o

i~ Line sample

Edoardo Patelli University of Liverpool

26 January 2018 -39 -

@ Identify next closest
line (j+ 1)

Edoardo Patelli University of Liverpool

Advanced Line Sampling Advanced Line Sampling
Line search Line search
Strategy Strategy

@ Identify ¢/ using quasi
Newton method

® |dentify next closest Line sample
line (j + 1)

@ Start line search from Line g0
c

Edoardo Patell

University of Liverpool

26 January 2018 -39 -

@ Identify ¢/ using quasi
Newton method

® |dentify next closest
line (j+ 1)

@ Start line search from
Cl

@ Process next line

Edoardo Patelli University of Liverpool

26 January 2018 -39 -
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Computational methods Line sampling Computational methods Line sampling

Advanced Line Sampling Advanced Line Sampling

Updating Importance Direction Updating Importance Direction

@ Update automatically the
importance direction
B Recompute Ps without s;m
re-evaluating the model ° o
Points in SNS invariant to any °
space rotation

@ Update automatically the
importance direction
B Recompute Py without
re-evaluating the model
Points in SNS invariant to any
BO=[|XL 0 + (O] space rotation

gi*1<g0

o new i.d. found

end
Edoardo Patelli University of Liverpool 26 January 2018 - 40 - Edoardo Patelli University of Liverpool 26 January 2018 - 40 -
Advanced Line Sampling Advanced Line Sampling
Updating Importance Direction Updating Importance Direction

@ Update automatically the
importance direction
@ Recompute Ps without
re-evaluating the model
Points in SNS invariant to any
space rotation

@ Update automatically the
importance direction
@ Recompute Ps without
re-evaluating the model
Points in SNS invariant to any
space rotation

Edoardo Patelli University of Liverpool 26 January 2018 - 40 - Edoardo Patelli
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Example 1 Example 2
o° Example 1
0 T T
g(x) =—x2+x2c xi ~ N(5,22) X~ N(2,2?)
vc=1(10,10.210.5,12,14,16)
§ Example 1 ] , Example 1 N 2 5L ——
‘0_ f H[~o—Monte Garlo ; 0 g(x) = Zi Xi +C 0 i +M§2t§§n?slli)ng
*© :kgjaig‘fn‘:egsamlm Y : Xi ~ N(27 1) —+— Advance Line Sampling
wiI \/E = % 10°h : i
o (7,9.33,14.7,18.1,24.8,34,82. E
107 N =
4 3L
w (4,10, 30,50, 100,200,500) "
107]
107 102 . . i i
0 100 200 300 400 500

Number of variables

Edoardo Patelli University of Liverpool 26 January 2018 - 41 - Edoardo Patelli
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Multi-storey Building Line sampling

. o . Applicability and limitation
@ Multi-storey building modelled with ABAQUS Requires prior information of the failure region
@ 8,200 elements and 66,300 DOFs 9 P 9

@ 244 independent uncertain quantities considered
@ Aim: failure probability due to static load

i High-dimensional: Yes *
i Multiple failure modes: Possible *
iii Small failure probabilities: Yes*

* de Angelis, M.; Patelli, E. & Beer, M. An efficient strategy for interval computations in
risk-based optimization ICOSSAR 2013, June 16-20, 2013

* de Angelis, M.; Patelli, E. & Beer, M. Advanced line sampling for efficient robust reliability
analysis Structural safety, Elsevier, 2015, 52, 170-182

+ 1t will be explained later

Line sampling
Only 100 model evaluations
Estimated failure probability: 1.3 - 1075

Edoardo Patell University of Liverpool 26 January 2018 -43- Edoardo Patell University of Liverpool 26 January 2018 -44-
Computational methods  Subset simulation Computational methods  Subset simulation

Outline Subset simulation

& Compute small failure probability as a
a Computational methods pr‘o‘duct of larger conditional probabilities
o
- &
@ Subset simulation
D R m m
@ P =P{(Fi| = P(F)

Edoardo Patelli University of Liverpool 26 January 2018 - 45 - Edoardo Patelli University of Liverpool 26 January 2018 - 46 -

Subset simulation Subset simulation
Compute small failure probability as a Compute small failure probability as a
product of larger conditional probabilities product of larger conditional probabilities &
@ P(Fy) usually by means of plain @ P(Fy) usually by means of plain
Monte Carlo . . Monte Carlo LN
® S S B Identify first limit state function N S —

Edoardo Patelli University of Liverpool 26 January 2018 - 46 - Edoardo Patelli University of Liverpool 26 January 2018 - 46 -



Computational methods Subset simulation Computational methods Subset simulation

Subset simulation

Compute small failure probability as a

Subset simulation

Compute small failure probability as a

product of larger conditional probabilities product of larger conditional probabilities
@ P(Fy) usually by means of plain @ P(Fy) usually by means of plain
Monte Carlo Monte Carlo
@ [dentify first limit state function F4 e @ I[dentify first limit state function F4 .
@ Generate conditional samples from L @ Generate conditional samples from '
P(F2|Fy) : P(F2|Fy) )
m m-1 m m—1
Pi=p (ﬂ F,-) = P(F) | [ P(FisilF) Pi=p (ﬂ F,-) = P(F) [ [ P(FisilF)
i=1 i=1 i=1 i=1
Edoardo Pael e 26 Jauary 201646 - Edoardo Pael eI, 26 Jaary 201646 -

Subset simulation

Requirements and challenges

Subset simulation - MCMC (component-wise)

1: for each k-level do
How to generate conditional samples from P(F; 1|F;) 2: Xk« F(x|Fy)
@ Using Markov Chain Monte Carlo (component-wise updates 3 foreach component X;do
Metropolis-Hastings algorithm) 4 generate new component X; < r(X;)
I , 5: accept with probability r = min(1, ¢(X})/4(X:))
@ Sample new state from a proposal distribution X’ + 7(X) 5 end for
@ for each component X; accepted with probability 7 for each proposed candidate X' do

@ Accepted if X’ € Fj g' if )gé < F kjh;[‘
@ Require definition of proposal PDF 10: else (e
@ Sequential approach 11 Xkr1) = X

12: end if

13: end for

and fo
Edoardo Patelli University of Liverpool 26 January 2018 -48 -
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Subset simulation-oo Subset simulation-oco

Equivalent problem . . . . . . Component-wise updates Metropolis algorithm
Subset-MCMC efficiency increases with dimensionality

Equivalent problem 1: Xy < F(x|Fk)
@ Each random variable X represented by an arbitrary (and 2: for each component X; do
hence possibly infinite) number of hidden variables Z 3. for each hidden variable X; do
4 generate new component Xj; < 7(Xj — Zj)
10 5: accept with probability r = min(1. $(X})/6(X;))
Xi = 7 >z & end for ,
j=1 7 SetX « LY, 7

@ Linear transformation: X = LZ response depends on X s: end for

Central Limit theorem: The sum of many IID random variables with defined expected value and |
finite variance will be approximately normally distributed. J

Study the limiting behaviour of the MCMC algorithm

Edoardo Patelli University of Liverpool 26 January 2018 -49 - Edoardo Patelli University of Liverpool 26 January 2018 - 50 -




Computational methods Subset simulation Computational methods Subset simulation

Subset simulation-oco Subset simulation-oo
for n — oo the candidate X’ is distributed as Gaussian distribution for n — oo the candidate X’ is distributed as Gaussian distribution
with mean aX; and variance s?: with mean aX; and variance s?:
_ [0 2 —_ (X2
ki= fo w2 (—%) mi(w)dw, ki= Jo w2 (—%) mi(w)dw,
S,'Z4/i,'*4l{,,27 ai=1-2k; a,?+s,7":1 S,':4li,'741{,,2, ai=1-2k; a,2+s,-2:1
Papaioannou I., Betz W., Zwirgimaier K., Straub D.: MCMC algorithms for subset simulation. |’ Papaioannou I., Betz W., Zwirgimaier K., Straub D.: MCMC algorithms for subset simulation. [’
Probabilistic Engineering Mechanics, 2015, 41: 89-103 Probabilistic Engineering Mechanics, 2015, 41: 89-103
Siu-Kui Au and Edoardo Patelli Subset simulation in finite-infinite dimensional space. Reliability Siu-Kui Au and Edoardo Patelli Subset simulation in finite-infinite dimensional space. Reliability
Engineering and Safety System, 2016 148 66-77 J Engineering and Safety System, 2016 148 66-77 J
@ Conditional PDF does not depend on hidden variables @ Conditional PDF does not depend on hidden variables
@ Allows to directly generate samples X @ Allows to directly generate samples X
Edoardo Patelli University of Liverpool 26 January 2018 - 51 - Edoardo Patelli University of Liverpool 26 January 2018 - 51
Subset simulation-co (Algorithm) SubSim-oo
Matlab implementation
1: @ «+ V1 — s? where s = [sy,...,s,] represents the vector of chosen stan-
dard deviation for each component X; % bk = threshold of the current level
2: for each SubSim k-level do % Mx = matrix of initial samples (Nvariables,NinitialSamples)
3 Xy F(x|Fy) % Vstd = vector of standard deviations
4:  generate n candidates X’ ~ N(aX™®, s) Va = sqrt (1-Vstd."2); _
5. for each proposed candidate X' do Mx = rep_mat(Mx,NsampIesJ*),
6 if X’ € F; then MxCandidate = normrnd(Va.*Mx,Vstd);
7 Xty = X! % Evaluate the model (myModel)
8 else Vg=myModel(MxCandidate);
9: Xy = Xi % ldentify accepted samples (myModel)
10: end if Vaccepted=find((Vg <= bk))==1);
19 end for Mx(Vaccepted,:)=MprososedSamples(Vaccepted,:);

12: end for

Edoardo Patelli University of Liverpool 26 January 2018 -52 - Edoardo Patelli University of Liverpool 26 January 2018 - 53 -

Effect of the variance s2 Example: Multiple failure regions
Benchmark example #3, presented in Engelund 1993
o e Performance function: g4(x) = X1 X2 — PL
o o g 0 g Variable Distribution Mean Std
ogg E ----- X Normal 78064.4 11709.7
rrp el 822 Xe Normal 0.0104 0.00156
L g b e e P Deterministic 14.614 -
: . o L Deterministic  10.000 -
g (<]
v ? S. Engelund, R. Rackwitz A benchmark study on importance sampling techniques in structural [
i reliability, Structural Safety, 1993, 12(4), 255-276 J

~d
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Computational methods

Multiple failure regions

Results SubSim-co

Subset simulation

SubSim-

0.014 s : b -

Bl & % %

LN U S
ootz &% _ : 1
0.01 \ \ S 1

@}J_'
0.008 - . e %2 RS 1
& . B 9, o, >

3 . B P
0006 [ % S
\ g
0.004 |- \ e
q \
i

2733165
16355, 092, s \'fz

34, 3294 1

002 - — e ]

0.002 -34. ” 3‘5 3664 —|
043204 —

0 . . . . . . .
1 2 3 4 5 6 7 10 11
X, %10 *
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Computational methods

Multiple failure regions

Results SubSim-co

Subset simulation

0.014 SubSIm- o ,

0.012

0.01

0.008

-

0.006

0.004

0.002 T s 16,3664

Rl
o | | | | | | |
1 2 3 4 5 6 7 10 11
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o Multiple failure modes
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Multiple failure regions

Results SubSim-co

0.014

Computational methods

Subset simulation

0.012

0.01

0.008

0.006

0.004

0.002 -

— T teasss

L ——

16.3664 —|
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Multiple failure regions

Results SubSim-co

Computational methods

University of Liverpool

Subset simulation
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%104
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0014 ey - SubSim: o , , ,
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Muttiple failure modes System reliability Muttiple failure modes System reliability

Multiple failure modes Multiple failure modes
Each failure mode can be analysed separately (if known)
Define separate failure events

= [ [ (X Xd X,
EsU-UEk
can be approximated using only the most significant failure
sequences S;:

pr=PUL E)~ P, B)

Divide Et Impera )
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Multiple failure modes Approximate methods

@ Polynomial fitting*

Any failure can be reduced to a combination of parallel and series @ Product of Conditional Marginals*

system.
y @ Bounding techniques (first and second order)*
Pf(SyS)ZPAﬂPBﬂpc=PA*PB*PC ak
Pr(sys) = P4U PgU P¢ = ¥
PA+PB+P0—PA*PB—PA*Pc—PB*Pc+PA*PB*PC :

Edoardo Patelli University of Liverpool 26 January 2018 - 60 - Edoardo Patelli University of Liverpool 26 January 2018 - 61 -

Approximate methods Approximate methods
@ Polynomial fitting* @ Polynomial fitting*
@ Product of Conditional Marginals* @ Product of Conditional Marginals™
@ Bounding techniques (first and second order)# @ Bounding techniques (first and second order)#
i e P < Pr < pu
o £~ pi=3_max|0,P(E) -} P(ENE)
' / OV i=1 j=1
|‘( ,.// Ig m m
| % pu=Y P(E) - maxP(EnE)
i B P B =@y i) i—1 i—2 J<i
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Multiple failure modes | System reliability

Approximate methods

@ Polynomial fitting*
@ Product of Conditional Marginals™
@ Bounding techniques (first and second order)#

* Grigoriu, M. Methods for approximate reliability analysis. Structural Safety,
1982, 1, 155-165

* Yuan, X.-X. & Pandey, M. Analysis of approximations for multinormal
integration in system reliability computation, Structural Safety, 2006, 28, 361 -
377

# Ditlevsen, O. Narrow Reliability Bounds for Structural Systems Mechanics
Based Design of Structures and Machines, 1979, 7, 453-472

Edoardo Patell University of Liverpool
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Simulation methods

Importance sampling

System perf fun. System perf fun.

26 January 2018 - 61 -

(_datal
N [ |data2
~_ |[]data3
2| |datad

data5

Edoardo Patelli University of Liverpool

Simulation methods
lSysterr\ Failure |

@ Simulation methods can be used
on estimate basic events (based
| on diffent performance functions)
@ Combine the results to estimate
the top event

Only Monte Carlo sampling guarantees |

l—‘ : the identification of all the failure
@ modes!
Edoardo Patelli University of Liverpool 26 January 2018 - 62 -

Multiple failure modes | System reliabilty

Efficient Importance sampling

%

af

@ Compute the design point of Z
the intersection of two events :
(iteratively) S

B Construct an important o
sampling density around the
desing point G

Edoardo Patelli

26 January 2018 - 63 -
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Multiple failure modes | System reliabilty Multiple failure modes | System reliabilty

Efficient Importance sampling

& T
1
1| Portwengaina
WY graden i chigunsd

@ Compute the design point of :
the intersection of two events ==
(iteratively) o

@ Construct an important
sampling density around the
desing point ) i

== 'ma(gl.g2 |

B 4 z

»

Edoardo Patelli University of Liverpool

]
=
o
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Efficient Importance sampling
Parallel system

@ Create an importance

denitity centered on the

Desing Point )

@ Generate samples mostly 3

(only) in the failure region*. .~

Moderately non-linear limit state functions - Standard IS

H
Ve
'

o Fes

*Patelli, E.; Pradlwarter, H. J. &

Schuéller, G. I. On Multinormal

Integrals by Importance Sampling for

Parallel System Reliability Structural -k
Safety, 2011, 33, 1-7

Edoardo Patelli

University of Liverpool
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Multiple failure modes

System reliability

Efficient Importance sampling
Parallel system
@ Create an importance
denitity centered on the
Desing Point
@ Generate samples mostly
(only) in the failure region*.

*Patelli, E.; Pradlwarter, H. J. &
Schuéller, G. I. On Multinormal
Integrals by Importance Sampling for
Parallel System Reliability Structural
Safety, 2011, 33, 1-7

Origin

Edoardo Patell University of Liverpool

Multiple failure modes

Simulation methods

Line sampling and Subset simulation

System reliabilty

. System perf fun.

All the methods presented can
be applied to estimate the failure

26 January 2018 - 65 -

probability of individual failure
mode

Subset simulation should be
able to identify different failure

- LS(ALL)

mode (in theory).
In practice there is no guarantee

Muttiple failure modes System reliability

Efficient Importance sampling

Parallel system

@ Create an importance

Moderately non-linear limit state functions - Efficient IS

denitity centered on the

Desing Point
@ Generate samples mostly ’
(only) in the failure region*. ~

X

H
H
v
L5

*Patelli, E.; Pradlwarter, H. J. &

Schuéller, G. I. On Multinormal

Integrals by Importance Sampling for
Parallel System Reliability Structural ,

Safety, 2011, 33, 1-7 | ! ‘
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Conclusions

Outline
@
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[ [

Summary: computational tools

Analytical approaches:

@ Limited to quasi-linear cases and low dimensions
Monte Carlo method

@ Always applicable but requires large number of samples
Importance Sampling

@ Requires prior-knowledge of important area
Line sampling

@ Independent by the target probability level,

@ Does not work for strong non linear performance function
Subset simulation

@ Applicable for linear and non linear cases but difficult to tune

Edoardo Patelli University of Liverpool

26 January 2018

Summary

Which tools?

i High-dimensional:
Monte Carlo, Line sampling, Subset simulation
i Multiple failure modes:
Monte Carlo, decompose failure modes — IS,LS
i Small failure probabilities:

Line sampling (moderately non-linear), Subset simulation
(otherwise)

-68-
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Conclusions

OpenCossan
Wwww.cossan.co.uk
Computational methods and examples part of OpenCossan

@ Free and open source and human readable software
& Modular MATLAB® toolbox: easy to reuse components

LY

Thin file is part of OpenCossan =https://cossan.co uke
Copyright (Ch 2006-201E8 COSSA DRIING GRIUP
M . Liabdlity .~
Raninm Ferfarmance. % Define & Model
Quantitis Function e Medal(Evaliator MySalvar, Tnput’, By InputObject) :
i b s % Define the Performnce function
Pratabilistic
o] Sirrulator L
Magel T T “Canesity",
% Define the Frobabilistic megel
- - HyPrabllod=Prababilistichudal Thesel” Myllodel , 2 Function MyPerFun) :
ability % Define the reliabilit r

MySimitatar=LinaSangling ‘Lo
N Perfore relisbility snalysas
Pty It

Edoardo Patell University of Liverpool
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Reliable engineering computing

Theme: Computing with Confidence

Conclusions

16-18 July 2018
www.rec2018.uk
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HYPER-SPHERICAL IMPORTANCE
SAMPLING AND EXTRAPOLATION FOR
HIGH-DIMENSIONAL RELIABILITY
PROBLEMS

Ziqgi Wang
zigidwang@yahoo.com

Earthquake Engineering Research & Test Center, Guangzhou University, China

Junho Song
junhosong@snu.ac.kr

Department of Civil and Environmental Engineering, Seoul National University, Korea

In order to overcome challenges in low-probability, high-dimensional reliability problems (potentially
with multiple failure domains), the speaker has been developing various reliability analysis methods
recently. The presentation in this workshop will focus on two methods developed based on hyper-
spherical description of high-dimensional reliability problems: (1) cross-entropy-based adaptive
importance sampling using a von Misers-Fisher mixture model (Wang and Song, 2016); and (2)
hyper-spherical extrapolation methods (Wang and Song, under review). The presentation will
introduce the two methods in detail and present their performances in various numerical examples

in order to identify merits and future research topics of the hyper-spherical approaches.

References:

1] Wang, Z., and J. Song (2016). Cross-entropy-based adaptive importance sampling using von
Mises—Fisher mixture for high dimensional reliability analysis. Structural Safety, 59:42-52.

[2] Wang, Z., and J. Song (under review). Hyper-spherical extrapolation method (HEM) for

general high dimensional reliability problems. Structural Safety.
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Hyper-spherical Importance Sampling and
Extrapolation for High Dimensional
Reliability Problems

Junho SONG Ziqi WANG*/FF#
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High dimensional Euclidean space

Volume Explosion

In n-dimensional space, consider a hypersphere inscribed in a hypercube
/2

Vhypersphere = —m— R H
r(z+1)
Viypercuve = 2R)™

Vhypersphere

/2
=————~>50,n->+w
Viypercuve 2"1“(2 + 1)

Volume Concentration
Volume tends to distribute in the ‘tails’

Betancourt (2017)

High dimensional probability space

There may exist a typical set
In n-dimensional space, consider the probability
Prgem = [ n@dg
qeEQ
Betancourt (2017)

PDF 7(q) concentrates around its mode,

Typical
Sel

dq is much larger away from the mode

9~ Qaponte!

High dimensional standard normal space
The typical set is a hyper-ring

y, A trade-off between the exponentially decrease
in probability densities with the distance from
the mode and the exponentially increase in the

bt it varface spherical area with the distance from the mode

For n = 400, 95% probability is
contained within the ring 20 + 1,
and 99.99% is contained within the
ring 20 + 2.

-y

Important ring is named by Katafygiotis and Zuev (2008)

Contents

Contents

i/ il Hyper-spherical formulation based extrapolation
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Hyper-spherical formulation

M
o) 1 i
P e(r)fx(r)dreﬁg 00 < | /™

Contents

where 6(r) = As(1)/An, An r&::f) \ _' b ko It ; 1} Hyper-spherical formulation based importance sampling
2 ‘ L
* Valid for any dimensions o
-
« Especially convenient for high dimensional problems &
r; drawn from f, (r) is likely to have r; € [yn — &,4/n + €. H'I"ﬂ‘
NEXT?
Variation of 6(r;) with r; (drawn from f, (r)) is expected to be small =
Hyper-spherical formulation based
importance sampling Von Mises-Fisher Mixture as the IS density
M s T Wang, Z., and Song J.(2016). Cross-entropy-based adaptive importance sampling using von Mises—Fisher mixture for
J‘w . 1 P g - high dimensional reliability analysis. Structural Safety. 59: 42-52.
Pr = oM f,(rdr =— T
7= 0 M; ) / \%\ - Sampling by “von Mises-Fisher Mixture” model
Construct an IS density to estimate 6(r;) / " N
o(r) = f@dﬁ (? G ) % s fomem (W V) = TE_y @y fomr (W Vi)
D =
A, ;
f L, (i) fio(i)d = Z L () where YX_ a,=1, a>0forvk
A frs () s =N nfls(“]) “

Finally, the IS formula is denved as

» 1 ii L. (r:u;)
7= N-M anS(“J)

i=1j=1

where r; drawn from f, (1), ; drawn from f;5(u)

fomp(®) = cq(1)e™™

¢ K:concentration parameter a4
¢ u:mean direction
*  ay: weight for the k-th vVMF

How can we find parameters of the vMFM
model?

“Best” importance sampling density

v H® 100400
p(x)_ﬂH(x)\dx_ P,

q /; /

N 4 { 1 V%

U’ \w ) ’/ ‘\,,,
Ay

PO S
N

+ Can't use directly... if we already know P;, we do not need MCS or IS.

Sttill helpful for improving efficiency, if 4(x) is chosen in order to have a shape
similar to that of /(x)fy(x)

Adaptive importance sampling by minimizing
cross entropy

Kullback-Leibler “Cross Entropy” (CE)
D'k = p'®)In p’ ()dx [ p (%) In (x)dx

«+ “Distance” between “best” IS density p*(x) and current one h(x)
« One can find a good h(x) by minimizing Kullback-Leibler CE, i.e.

arg\min D(p', h(v))= arg\min“p‘(x) In p"(x)dx —I p’(x) Inh(x; v)dx]
= argmax J. P (x)In A(x; v)dx
=arg maxj.l(x)fx(x) InA(x; v)dx
« Finds the optimal values of th‘e distribution parameter(s) v approximately by small-size
pre-sampling, then performs final importance sampling

* Rubinstein & Kroese (2004) used uni-modal parametric distribution for h(x;v) and
provided updating rules to find optimal v through sampling




CE-AIS with Gaussian Mixture (kurtz & Song 2013)

Kurtz, N., and Song J. (2013). Cross-entropy-based adaptive importance sampling using Gaussian mixture. Structural
Safety. 42:35-44.

K

« CE-AIS-GM Algorithm /(x;v) :anN(x |2
k=1

1. Initialize v 2. Sample from current density

3. Update paramelers v

o5
5. Final 1S I 4. Check convergence

Near Optimal Density Optimal Density

CE-AIS with Gaussian Mixture (Kurtz & song 2013)

S0 0 Step 1 sep2 i
4 4 . -
2 2 2| 4 VRN
o o o E
i ) s, o
4 4 . A7 \
/ 1
5| -6] 6| ! \
! \
o o 3 / \
L Era e N I T +
X % % \
Updating through Pre-samplings “Best” Density
Step0 Step2. Stepd.
7 77 7 7
4 / 4 e 4 /7
Id
2 2 2
of 0 < 0) o
2 2 2 J
4 4 4
Tz o 2z 4 Tz oz A
X, X %

Parameter estimation for vMFM model

S I (W)W (B WY (1)

R Y VA CH TGS
= Bl by ()W (W WY;(2); .
B ()W @ WY ow |

e .

K = 1= 52 z

where ~

¢ _ I ()W Wy ) | e
S L ()W (W55 w)Y(z)

@) = arfomr ()5 Vie)

R )

Procedures of Hyper-spherical importance
sampling using vMFM
1. Initialize v * 2, Sample from current density

3. Update parametars v

Yes
5. Final IS X 4. Check canvergence

1. Pre-sampling to obtain near-optimal (i.e. minimum CE) vMFM
sampling density using updating rules

2. Perform the final IS on hyper-spheres with radius drawn from the

f ™

Example 1: Series system reliability in high-
dimension

n

Ga(W) = By = ) w, Go(W) = o+ )

i=1 =1
System failure domain: G;(u) <0 U Gy(u) <0
B1 = B, =3.5,n=300 -

Updating of mean directions:

T et e et e

e———

Pt st e o b e

Example 2: Nonlinear random vibration
analysis of MDOF system

« Discrete representation of stochastic process representing
ground acceleration
(in frequency domain)

Uy(0) = Z;Ziaj[uj cos(w;t) + 1 sin(aw;t)]

where
v, 0;: independent standard normal random variables @m m=bxiity
wj: discretized frequency points Ky =2 % 107K m
om
i =425 A
D-l (w‘) @ Ty = 4 107N m
S(w;): two-sided power spectrum density/PSD / om

Aw: frequency step size b By =5 K 10TH
i om
)

| #
by = 6% 107N fm




Example 2: Updating of vMFM

+ Instantaneous failure

ep D Bl

Yo

« First-passage failure (series system)

Contents

Hyper-spherical formulation based
extrapolation

P = fo 0(r) fy(Mdr —

Build an extrapolation method via writing 6(r) \\
as 8(r) = (r,v) w

Pr= JO 0(r)fy(Madr

Jn+e
EJ O v)f(mdr
Jn—g

Observe that 6(r) grows larger if r increases, given the safe domain is
star-shaped with respect to the origin

Concept of the extrapolation:
« Find v of 4(r,v) given 6(r) estimated from large radius r
« Estimate P; using the hyper-spherical formulation

Model for failure ratio 4(r,v)

Wang, Z., and Song J. (2018). Hyper-spherical extrapolation method (HEM) for general high dimensional reliability
problems. Structural Safety, 72: 65-73.

Aggp(rio) 1 <n—1 1) JE—

Oear(r @) == oy~ = 2Bsinte| 772 o,
n

A 1

Bgin24(+) is a regularized incomplete beta factor |

K K

N 1 n—-11 L8}

B0 K) = ) Beaps 11 %) =5 ) Buina (TE) .
k=1 k=1 /

Considering the dependence of a; on r

K .
N 1 n—-11 —
00 bk) =3 ). Bl_[bk_(r)]z (—2 'E)

k=1 T

Assume b (r) does not change dramatically with r
« Zeroth-order hyper-spherical extrapolation method (ZO-HEM):
by(r) = by,
« First-order hyper-spherical extrapolation method (FO-HEM):
by (r) = air + by,

Probability estimation using HEM

+ ZO-HEM:

K
Py = Z O(—by)
k=1

+ FO-HEM:

P~1fﬁ+£i3 no11)
=3 . 1—(ak+bk)z 2’2 fy(mdr

n-¢ = -

Procedures of HEM
+ Select a sequence of mradii 7y, i = 1, ...,m, 1; € [Tiow, Tup |
+ For each r;, compute the failure ratio 8(r;)

+ Given 8(r;), compute optimal values of b, and K in for ZO-
HEM, or ay, b, and K for FO-HEM, so that the error function
> willogd() — loge(n-)]2 is minimized, where w; is a
weight that puts more emphasis on more reliable data

» Compute the failure probability using CDF of standard
normal distribution or numerical integration




Example 1: Series system reliability in high-
dimension

G = Aivii— ) 0, GoW) = fovii+ ) wy
i=1 i=1

System failure domain: G;(u) < 0UG,(u) <0

3 Error a Error
B c.o.v %) B c.0.v %) B

EX 2784 0051 007 2800 0053 065 2782
5 3328 0022 051 3338 0058 082 3311
I 3820 0019 -033 3.846 0043 033 3.833
P 4366 0009 036 4381 0025 071 4350
I 4906 0052 086 4894 0.051 059  4.865

Example 1: Series system reliability in high-

dimension
6(r) versus r curves for B, = 5.0

[ pam
0 | ——2z0-HEM
| == FoHEM

Falure ratio

8 W 1z 4 @ 8 W 22 M :® 2 A
Sirnpling Fadiis

Example 2: Nonlinear random vibration
analysis of SDOF system

SDOF Bouc-Wen oscillator subjected
to white noise

0.043 -1.48 2556

0.048 -2.13 3.036

0.037 -1.84 3.540

Example 2: Nonlinear random vibration
analysis of SDOF system

6(r) versus r curves for 0.10 (m) threshold

I mporant Aing

o Data
—ZO-HEM | i
= = FOHEM| i

te % % 0 ] 2 #
Samypling radius

Contents

Future research

[Possibilities] Integration with Hamiltonian Monte Carlo based subset
simulation

Wang Z, Broccardo M, Song J. Hamiltonian Monte Carlo Methods for Subset Simulation in Reliability
Analysis. arXiv:1706.01435

o) frfen W ) 5
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Summary

[Summary 1] A hyper-spherical formulation to perform reliability analysis in
high dimensional Gaussian space is proposed.

[Summary 2] An importance sampling method using the hyper-spherical
formulation in conjunction with von Mises-Fisher mixture distribution is
proposed.

[Summary 3] An extrapolation method using the the hyper-spherical
formulation is proposed.

Wang, Z., and Song J.(2016). Cross-entropy-based adaptive importance sampling using von Mises-Fisher mixture for
high dimensional reliability analysis. Structural Safety. 59: 42-52.

Wang, Z., and Song J. (2018). Hyper-spherical extrapolation method (HEM) for general high dimensional reliability
problems. Structural Safety, 72: 65-73.
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MANY BETA POINTS TOO FAR: IS 42
REALLY THE ANSWER?

Karl Breitung
Germany breitu@aol.com
Engineering Risk Analysis Group Faculty of Civil, Geo and Environmental Engineering Technical

University of Munich

Approach your problems from the right end
and begin with the answers. Then one day,
perhaps you will find the final question.

R. van Gulik, The Chinese Maze Murders

The classical problem of structural reliability is that for a limit state function (LSF) g(x) in the n -
dimensional Euclidean space and a probability distribution defined by a probability density function

(PDF) f(x) the probability of failure is defined as an integral:

P(F) = (xj)gof(x) dx

Most methods transform the problem from the original space to the standard normal space which

yields:

P(F)=(2z)" | exp(—M] du.

g(u)<0 2
Now several points will be discussed:

e Some philosophy. What is the problem seen in larger context? During the last fifty years the
problem described in the last equation has changed, even if the formulation remained the
same. Here gestalt switches occur not because we change our point of view, but because the
structure we are studying changes. What was it and what is it now? Is the information we

want to find numbers or structures? Plea for a structuralist view.

¢ Definition of the problem as a global minimization problem. Using the structure of the
standard normal probability space one can define the problem as finding specific

submanifolds on hyperspheres.



Does a method which claims that the structure of the problem is irrelevant as subset
sampling really work? This is a cautionary tale about a method without a clear mathematical

concept.

A tentative proposal for a solution. In the original FORM/SORM concept the design point is

searched by solving the Lagrangian system:

u+Avg(u)

Now, instead one searches the extrema of the LSF on a centered sphere with radius »

Vg(u)+puu = 0
luff -* =0

Going outside from a sphere where the minimum is larger than zero, one can reach by
iteration a sphere where the minimum is equal to zero. For large dimensions then the

probability mass of the set {g(u) < 0} lies on a thin shell outside of this sphere.



Terminus and Mike Box

Many beta points too far: is 42 really
the answer?

Karl Breitung

ERA group, TU Miinchen
breitu@aol.com

A good decision is based on knowledge and not on numbers.

Plato
Thanks to Prof. S. Schaffler (UniBw Munich/Neubiberg) for Th;”goﬁ ofl(;)okundariehs .antlj. Iimits
/X explaining to the ignorant author some concepts of global X shou now their fimits
© oA optimization © R oA
goo 1 (but he is not responsible for anything said here) 4002

Terminus and Mike Box

|. Structuralism

(What | think IMHO should be done)

The god of boundaries and limits There is no strength in numbers,
_All should know their limits have no such misconception. .
X (Uriah Heep, Lady in Black) X
g00 2 00 3
Gestalt Switches Structuralism

Kuhn argued in The structure of scien-
tific revolutions Kuhn (1996) that these are
caused by gestalt switches. One looks at the
known fact or structure from different angle
or perspective and suddenly one sees some-
thing different. But also in the time between
: revolutions science progresses by many small
Thomas s gestalt switches (see Kuhn (1996), p. 181
Kuhn and Kuhn (1970), p. 249, note 3). Also in

R Jean Piaget
structural reliability there was a sequence of
such switches.

Structuralism is a scientific methodology em-
phasizing the relations between the elements
of the subject as main topic of the study,
for a description see Piaget (1971). After
Rickart (1995) "structuralism” can be de-
fined as a method of analyzing a body of in-
formation with respect to its inherent struc-
ture.

Mathematical structuralists think that math-
ematics is fundamentally concerned with
structures, or with the relations mathemat-
ical objects bear to each other in virtue of
belonging to some structure.

Charles E. Rickart



A Gestalt Switch towards Structuralism

Structural reliability should make a gestalt switch towards a structuralist
view of reliability problems. This becomes more and more necessary, since
the problem structures are getting more complex.

Try to identify the relevant substructure as primary target, failure proba-

bilities then as secondary target.

The changing shapes

Von der Vergangenheit trennt uns nicht ein Abgrund, sondern die veranderten

Verhaltnisse. (A.Kluge)

2 1

(a) The reliability prob- (b) The reliability prob-

lem at the beginning lem evolving

Development of structural model

Underlying Hilbert 3
space

Dimension reduction

The changing shapes

Von der Vergangenheit trennt uns nicht ein Abgrund, sondern die veranderten
Verhiltnisse. (A.Kluge)

ia

(a) The reliability prob-
lem at the beginning

The changing shapes

Von der Vergangenheit trennt uns nicht ein Abgrund, sondern die veranderten
Verhaltnisse. (A.Kluge)

Prajection

1 1 .,.

(a) The reliability prob- (b) The reliability prob-(c) The reliability prob-
lem at the beginning lem evolving lem now

1

Figure: The varying shapes of the reliability problem
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[1. Subset Simulation

(Which IMHO is wrong)

Building a functional model



Confucius on Names

One day, a disciple asked Confucius: "If a king were to en-
trust you with a territory which you could govern according

to your ideas, what would you do first?”
Confucius replied: "My first task would certainly be to rec-

tify the names.”

The puzzled disciple asked: "Rectify the names? Is this a

joke?”

Confucius replied: " If the names are not correct, if they do
not match realities, language has no object. If language is

without an object, action becomes impossible..."
( The Analects of Confucius, Book 13, Verse 3 )

The Basic Problem in SuS Formulation

In standard normal space with pdf f(u) = (27) /2 exp(—|u|?/2):

Mathematical solution |

The cube denotes a set of problems.
Assume a mathematician finds a so-
lution. He will derive a theorem valid
in the red sphere.

An engineer will check his heuristics

>

my
»
>

goo 14

Doing asymptotic analysis without
calculus.  In the standard normal
space the design areas A; and Ay
(neighborhoods of the design points)
have to be found and their probability
content estimated for an asymptotic
approximation.

P(F) ~ P(A1) + P(A2), 8 — o0

This is a result derived by M. Hohen-
bichler (see Breitung (1994), p. 53).

"~

The Basic Problem

In standard normal space with pdf f(u) = (27)~"/2 exp(—|u|?/2) approx-
imate P(F) = P({g(u) < 0}). This is the REAL THING, nothing else,
and also SuS is an approach to solve this.

>(

goo 11

my

>

In the standard normal space the
design points (filled black squares)
have to be found. Then with
FORM/SORM asymptotic approxi-
mations are derived:

P(F) ~®(=8)-C, 8 — o0

F(S)ORM First (Second) Order Reli-
ability Methods referring to the order
of the Taylor expansion.

Mathematical and engineering logic |

The cube denotes a set of problems.
Assume a mathematician finds a so-
lution idea. He will derive a theorem
valid in the red sphere.

Engineering solution |

An engineer will check his solution
idea by calculating a number of ex-
amples (green dots). So he will get
an idea that the method works for
similar cases (green spheres).

goo 15




Hidden assumption |

But since in the calculation of these
examples it is not clearly specified
what properties these examples have,
it might happen that there is a hidden
assumption common to all examples
(grey surface).

Credo of Subset Simulation (SuS)

Zuev et al. (2012):

Subset Simulation provides an
efficient stochastic simulation al-
gorithm for computing failure
probabilities for general reliabil-
ity problems without using any
specific information about the
dynamic system other than an
input-output model. This inde-
pendence of a systems inherent
properties makes Subset Simula-
tion potentially useful for applica-
tions in different areas of science
and engineering where the notion
of "failure” has its own specific

Neaning,. ..
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Credo of Subset Simulation (SuS)

Zuev et al. (2012):

Subset Simulation provides an
efficient stochastic simulation al-
gorithm for computing failure
probabilities for general reliabil-
ity problems without using any
specific information about the
dynamic system other than an
input-output model. This inde-
pendence of a systems inherent
properties makes Subset Simula-
tion potentially useful for applica-
tions in different areas of science
and engineering where the notion
of "failure” has its own specific

mneaning,. ..

E R A

goo

Monahan (2011) p. 394:

...For MCMC, an extremely
naive user can generate a lot of
output without even understand-
ing the problem. The lack of dis-
cipline of learning about the prob-
lem that other methods require
can lead to unfounded optimism
and confidence in the results.

. Promise of SuS: You can do everything without understanding anything!

jrestricted validity |

So in fact taking into account this
hidden assumption, the method is
valid only for the cases where this as-
sumption is fulfilled.

Green surface part.

Credo of Subset Simulation (SuS)

Zuev et al. (2012):

Subset Simulation provides an
efficient stochastic simulation al-
gorithm for computing failure
probabilities for general reliabil-
ity problems without using any
specific information about the
dynamic system other than an
input-output model. This inde-
pendence of a systems inherent
properties makes Subset Simula-
tion potentially useful for applica-
tions in different areas of science
and engineering where the notion
of "failure” has its own specific

Neaning,. ..

E R A

goo 18

The Standard SuS Example

Monahan (2011) p. 394:

...For MCMC, an extremely
naive user can generate a lot of
output without even understand-
ing the problem. The lack of dis-
cipline of learning about the prob-
lem that other methods require
can lead to unfounded optimism
and confidence in the results.

From a larger value ¢; > 0 the fail-
ure regions F; = {g(u) < ¢} with
c > ¢ > ..cp = 0 are made succes-
sively smaller until the original failure
domain {g(u) < 0} is reached. Here
also the design points for the domains
Fj are shown. Using Hohenbichler's
lemma now estimate the probability
from the points in magenta.



Iteration: Design Points and Regions

In the SS approach the relevant ar-
eas of F, are found near the last re-
gion in F,_1 2. In SORM this corre-
sponds to searching the next design
point for F; in the neighborhood of
the last for F;_;. Sounds reason-
able?

A really grave problem in mathe-
matics is that not everything which
sounds reasonable is correct.

? "Given that we have found a failure point
6 € F,—1, it is reasonable to expect that more
failure points are located nearby”

This does not work as advertised!

Sequential determination of global extrema

Global and local extrema of functions: minima are shown by squares,
maxima by circles, filled symbols are global extrema

(a) Local and global extrema of a (b) The global minima of a function
function depending on a parameter

Series System with SuS

Find the point with minimal distance to the origin — design point — on
the domain bounded by the thick red curve {g(u) = 0}.

(a) The contours for g (b) SuS algorithm for g

ui—w)?  uw+tu uy + u
gl(u17u2):0.6+( ! 20 2)” 110\@27 &(u, ) =5+ 1\/5 2
g(ur,2) = min(gy, g2)

E R A

Remember Wild Bill Hickok. You also have to look behind you!

goo 24

Some Warnings Ignored

As Rackwitz (2001) said, an important step
in the development of methods is to show
where they do not work, i.e. to find the lim-
its of the applicability of the concept and to
construct counterexamples.

And Hooker (1995) said that the most im-
portant point is to understand an algorithm
Rack-  not to make it efficient.

witz http://repository.cmu.edu/tepper/
197/

Riidiger

John N. Hooker

A Simple Example with Smooth Functions
The position of global minima under constraints. Given a LSF:

u%-l—u;'

(uf +uB)u3 2
W T )% 2 =

b2 p

2
u
gl um) =5 —uf ~ Mz =52

The points with global minimum distance to the origin under g(u1, u2) = ¢
lie always on the axes (on the blue line segments).

/X The minimum distance points jump when the black circle is reached.

. This is a normal behavior in global optimization!
g00 23

Extrapolation with SuS

LSF: g(x1,x2) = 0.1- (52 — 1.5 - x% — x3)

(x2)
1—xf

, x0 < 3.5
, X2 > 3.5

Flxa) = ®(x1), F2(x) = {



Global minimization and SuS

It is not possible to find the design point (global minimum point on g(u) =

0) by a sequential method for c; > > ...c, =0

W] = (min lul, W =W S u”= min |u|
g(w)<g

)< g(u)<0

This works in examples with a Simple Simon geometry, but not in general.
If someone says, SuS is not an attempt to global minimization, what is it

then?

And if someone says, SuS does not work for such simple examples, remem-

ber: Hic Rhodus, hic salta!

The main problem in global optimization is to avoid local extrema and to
get out of them if stuck there. Unfortunately this is complicated, it is not

enough to run some MCMC's and wait.

N

E R A

26The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge. (D.J. Boorstin)

In global minimization for structural reliability one has to find the global

minimum point u™:

[u*| = min |u]
&(u)<0

Define the spheres S(y) = {u;u| = y}, this can be done finding the beta

sphere defined by

B= g\;g{S(y):umEigg(U) <0}

Onion Method Example

Table: lteration steps

Step Iteration
Point

1 1.2
2| (_1.58, _1.58)
3| (—4.58, _458)
4| (~3.10, -3.10)
5| (—3.71, —3.71)
6 | (346, 3.46)
7 (=357, -3.57)
Figure: The contours for g 8 | (—3.52,—3.52)
9| (—3.54, _3.54)
10 | (-353, 3.53)

[1l. Onion Concept

(Which IMHO might help a little)

The Onion Concept

In the original FORM/SORM con-
cept the design point is searched by
solving the Lagrangian system:

u+AVg(u) = 0
gu) =0

Now, instead one searches the ex-
trema of the LSF on a centered
sphere with radius 7 in an iterative
way

I
=]

Vg(u) + pu
u?=~+* =0

IV. Philosophy of science



Against Method

This is not an appeal to go forward in
a specific direction but to see things
from a broader perspective and to try
out various methods and concepts.
Since science is — as Feyerabend
(1993) says — in principle an anar-
chistic enterprise. And to give a fur-
ther quote from him, all methodolo-
gies have their limits even the most
obvious ones. So there is plenty of
room for new research.

Paul Feyerabend

Thank you for your attention

Some manuscripts: Researchgate, arxiv, osf

goo 34
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RESPONSE SURFACE METHODS and RANDOM FIELDS \\

coupled to NONLINEAR FINITE ELEMENT ANALYSIS
using DIANA

7 -

Civil Engineering
Geotechnical Engineering
Petroleum Engineering

1> DIANA FEA

I. Response Surface Method coupled to FEA (Probab)
1. Reliabilty analysis with DIANA

. Case study: Probabilistic analysis of reinforced concrete beam

. Case study: Reliability assessment of gravity dam block

. Discussion

IS

Il. Random Field coupled to FEA
1. Random fields with DIANA
2. Case study D: Concrete floor under restrained shrinkage
3. Discussion

Ill. Challenges

|. Response Surface Methods coupled to FEA

I. 1. Reliability analysis with DIANA

Directional Adaptive Response Surface Method (DARS)

« limit state function evaluations (LSFE)
— NLFEA:B; < Berir
= RSF B> Berie
« directional sampling in U-space
1
- P =gE (- X6

= 1 'N
- COVp, = gy Zita(Pi=Fp)

« response surface function (RSF)
n n i

G'(U)=a+ Zbiu, + zz Uil
=

==
Based onthe PD Thesis of P. Waarls

1. Additional Case study

I. 2. Case study

Concrete block(s) under monotonic loading

v
« performance Ladi
+ analytical formulas / NLFEA convergence
« material uncertainty
« limit state surface
G{fe} = Fnaxlfe} = Fexam
COVp, | sampled no. of Ggrsr=0 design B Banatytical
directions NLFEA point
45% 24 34 7 3.88 3.76 3.84

+ model uncertainty, 6 : G{fe,0} = 0+ Fpax{fe} — Foxam

Experimental results

+  similar experiments

« different failure mode

=> material uncertainty

beam A — flexural failure

beam B - shear failure beam C - shear failure

Based on MSo Thesis by P. Evangelou Based on WS¢ Thesis by P. Evangeliou




I. 2. Case study

« limit state function

« tight tolerance

« =7800 dof's

prohatiliny deny hssctins

worhastis iy

Based on MSc Thesis by P. Evangoliou

Based on Mo Thesis by P Evangeiou

> p=222

Based on MSc Thesis by P. Evangelou

I. 2. Case study

F3alfea & Hailure mode
Bt fisal response varfisce

1fe domain

b

=1200

. LSFEy pea = 200

» LSFEges

Based on WSc Thesis by P. Evangeiiow

1. 3. Case study

Reliability assessment of dam block against sliding failure
+ 3D FE model

+ Discontinuities & Nonlinearities
]

1 - macroscopic roughness Mohr-Coulomb friction

ICOLD 2017
= 143000
dof’s

mm

bondslip anchors

I. 3. Case study

Advanced FE modeling k

Phased analysis
Staggered analysis

Mohr-Coulomb zero-tension interfaces

flood R
(stochastic)

1COLD Benchmark 2017

I. 3. Case study

I. 3. Case study

« uncertainty: material & boundary

1COLD Benchmark 2017

Reliability assessment

component
system

1COLD Benchmark 2017




Coupling DARS to NLFEA

Robustness

+ quality of RSF

« line search

* numerical stability

« model uncertainty G{X,0} =0 -R{X}-S
Efficiency

« parallel processing

« advanced sampling

Extend benchmarks

1. Random Fields coupled to FEA

Il. 1. Random Fields with DIANA

N _Ax _ax?
JCSS material model p(bx) = e e pdx)=e

+ integration points

Correlation function

« exponential

« squared exponential
« threshold value

Distribution _ae
« normal pA) =ci+(1-c)-e ke
* log-normal =10
¢  Snl
Random Field generators “ =
« Covariance Matrix Decomposition (CMD) b
« Fast Fourier Transform (FFT) :
+ Local Average Subdivision (LAS) s = W & =

Il. 2. Case study D

Mechanical scheme: compressive
strength
Exisloncod comdrete
| ik
- [ &
ke ety Dows T Ty Tl Ty Ty
i tensile
strength
Random Field:
+ JCSS: f. (p=10)
+ log-normal
« FFT
+ SqExp Young's
modulus g
S B
—— ! i

Il. 2. Case study D

Il. 2. Case study D

+ Crack growth —no RF + Crack growth — with RF

Based on S Thesis by Rv.d Have.

RF 2 RF 3
L=tim L=nmm

tensile
strength

Number of cracks
crack ot Ember of racks serey emhoy
strains

e

Based on Mo Tesis by Rov.d Have




RF coupling to NLFEA

« crack initialization at weakest point / asymmetric crack pattern

+ numerical stability (?) Ill. Challenges
- gradual development of cracking: convergence
- cracking localization (p, COV )

RF parameters « Coupling RF to DARS to NLFEA

+ Calibrate current safety formats

« Engineering practice

DIANA FEABY DIANAFEABY
Deffecrparkia Vamovenss

s Dt 836N Amvem
The Netherands The ether
T31(0)88 3436200 T 151 (0) 88 342600
R by £ ()88 3426200

WWW.DIANAFEA.COM

s# DIANA FEA
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RELIABILITY ANALYSIS of
REINFORCED CONCRETE STRUCTURES:
ACCOMPLISHMENTS ano ASPIRATIONS

TNO workshop: Computational Challenges in the Reliability Assessment of Engineering Structures

mngvation

EEt—
MOTIVATION
» Built infrastructure: >50% of national wealth!l.

1 Ageing infrastructurel?l.
1 Uncertainty of parameters, models!2.

» Aim: 2
+ Better understanding of structural behaviour. |
+ Uncertainty reduction.
+ More economical asset management.

[1) Sarja A (2005). Integrated Life Cycle Design of Structures. e-Library: Taylor & Francis, 2005.
2] Frangopol, D. M. (2011). i 1

Structure and . 7(6), 389-413.
21 Retabsty s o RC e THOworshap Dot ks 201

™D i

PROBLEM STATEMENT

Probabilistic model

1 Current practice and methods: [l o T -
. ~
i Almost exclusively for new structures. 5 S
N N g a4
| How to deal with deterioration? £ curent 1 Linear FEA
g cice
i What to do with non-complying structures? 3 & :,:,m,m
(reserves?) 2 S Hand" cakuator
 How to use NLFEA for verification? No el Some prob. AT relevart variates
o prob. modelmocels  are assigned a prob.
| Reliability assessment can help, but: model

| NLFEA based limit state functions are computationally expensive.
' Model uncertainty?

 Random fields?

| How to translate to methods usable in practice?

3 Roksiy s of G schies THOwston 0o 24 mmry 0

™D i

RELATED TNO PROJECTS

1 Reinforced concrete bridges (deterioration).
1 Hydraulic structures (soil-structure interaction + deterioration).
» Advanced NLFEA
+ Probabilistic assessment:
i Reliability assessment.
¥
b
» Probabilistic modelling of corrosion.

1Rty o RG e THOworshap Dot 2k 201

mngvation

T e —

COMMON UNDERLYING CHALLENGES

1 Computational challenge: attain reasonable running times.
i Multiple failure modes
+ Random fields
1 Probabilistic updating for existing structures.

1 Code calibration (optimization).
Pathways
Reli./prob. algorithm System representation Comp. algorithm

(# LSF eval.) (physical model) (parallelization)

T —— LU r——

[1] Grooteman, F. (2011). An . 26(2), 134-141

TOOLS - RELIABILITY ANALYSIS

1 In-house:
Prob2B (+ Python + Openturns)
FERUM (Matlab) — extended:
1 Adaptive direction sampling!":
 multiple of response surface types
(polynomial, kriging, goodness-of-fit)
Coupling with FEM, e.g. Diana, OpenSees.

[N ——— [T —




RC STRUCTURES

DEEP BEAM

1 High-strength RC deep beam.
1 Bending failure & diagonal crack at support
1 NLFEAin Diana
Plane stress elements.
Concrete: cracking, crushing.
Rebar: hardening and rupture (perfect bond).

1 Limit state function (three random variables):

9=R(fe, f,)=S

Beams. ACI Structural

o s o fom]
1.95(4). 382390,

[1] Foster, S.J., Gilbert, R | (1998) Experimental Studies on

7 Rossiy s of G s

TNO 5

RC STRUCTURES

DEEP BEAM

Variable Distribution  Mean Coefficient of variation
Concretecompressive strength(f.) ~ Lognormal  88MPa  0.06
Rebaryield strength (f,)) Lognormal ~ 440MPa  0.045
External load (S) Gumbel 600KN 020
| ¥ 2

st midspan o [mm]

Method — #LSF Runningtime B q; R [kN]
evaluations

DARS[1] 66 25hours' 387 {005,0.15-0.99) 1446

“Diana 10.1 and a Kepler computer was used for the analysis: 16GB Intel(R) Xeon(R) CPU ES-2620 v3 @2.40GHz; 2.40GHz; Windows 10 Enterprise 64-bit SP1.

5 Rty o RC e

TNO 755

Probabilistic model

Gobsatety | ECOV, ol analysis (ovel
RC STRUCTURES ot [ st e RC STRUCTURES
DEEP BEAM 3 CONTINUOUS BEAM
5 St ol
£ ik Linear FEA
Added value of more advanced modelling: £ practce 1 Three-span beam.
] S"":”"" N 1 Bending failure (mechanism).
23 curan “Hand calcution s
zE practice 1 NLFEAn Diana:
Mo oxpict  Some prob. Al revantvarabies Beam-column elements. g
prob. modsl  models aro assigned a prob. N . i
model Concrete: cracking, crushing. ” =
analytical modelling “Tonlinear finite element modelling Rebar: hardening and rupture (perfect bond).
semi-probabilistic methods full-probabilistic method 4 [ "
EC PF GRF E-COV DARS 1 Limit state function (five random variables): 1 t ! y
o TN] il 10 10 96 -
S, [kN] 1367 1367 1367 1367 equivalent prob. model | »
Syl Ryl 177 1.23 123 1.14 - QZR(fcufw:fm:Esu)*Q t i e =
BH - - - - 387 m
BAL - - - - 1.02 _—
1] Jacinto, L, Neves, LA.C., Santos, L. (2015). Bayesian an existing brid tudy. Structure and ) 12(1), 117
[ — O moron 00 ks 00 D —— R
smnavation smnavation
TNO 70 TNO 52 e
CONTINUOUS BEAM CONTINUOUS BEAM
Variable Distrbution  Mear CoaThcient Added value of more advanced modelling:
of variation :
Togrormal  512MPa 00
Rebar yield strength (f,,) Lognormal  440MPa  0.065 v 7
Rebar ultimate strength (f,,) Lognormal  550MPa  0.07 ” analytical modelling ‘nonlinear
Rebar ultimate strain (¢,,) Lognormal 008 0,09 semi-probabilistic methods fullprobabilistic method
External load (Q) Gumbel _ 1510°%kN 020 = o GRE] Ty DARS
RaRN] 293 (0r 211) 242 295 277 ,
S, [kN] 342 342 342 342 equivalent prob. model
Wethod BL o/ o it state Total x Sa/Ral] sz s e = -
simulation function comp. time e B - - - - 380
s evaluations ]t " BB - - - 1.00
DARS - K 380

T Drana 0.1 and & Keplor compr

R —————

g eyt 1668 ToR)
V3 @240GHz: 2.40GHz Windows 10 Enterprise 64-bil SP1.

Gon(R) CPUE2620

P —




RC STRUCTURES

CONTINUOUS BEAM

1 Extension (ongoing):
I Random field representation of corrosion. |
1 Pitting corrosion of rebars.
1 NLFEA also in OpenSees to reduce the calculation time.

T

1 Promising results/directions from the literature:
I GPU parallelization: 10x speed-upl'l,

1 Cloud computing/@.

[1]Tian Y., Xie L., Xu Z., and Lu X. (2015). GPU-Powered High- lysis of La

HYDRAULIC STRUCTURES

Sheet pile wall

+ NLFEA.
+ Multiple failure modes (e.g. anchor, sheet pile wall, soil).
+ Corrosion.

' Spatial variability.

2015 '

Intenational Workshop on Computing in Civil Enginesring. 5

2] Ventura C.E. and (2013). Los Angles ouncil. Annual meeing. Presentation sides. =

131 Rusiy i of G s THOworston 0o 24 mary 0 4 Retty s o RCsvctos THO vk Delt 24y 218

CHALLENGES - QUESTIONS

+ Computationally demanding physical models — reduce the computational time:
+ Parallelization.
» “Smart” algorithms.

1 Solving reliability problems with random fields (1D-2D-(3D)),

(large number of correlated variables).

+ Multiple failure modes.

+ Reliability based calibration of methods for practice, e.g.:
» NLFEA-based verification and/or design.

We are looking, open for:
» Join our efforts on implementing and testing algorithms/methods.
y problems (the
» Joint effort to compile an open document with reliability methods (pros, cons).

) THANK YOU:FOR YOU
 ATTENTION

Take a look:
TIME.TNO.NL

innovatin ! 1

forlife m——
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Model uncertainty as random variable

FEM Nonlinear analysis of ULS — Global safety format Method of assessment based on validation by experiments

R
0= test
simulation
Gglobal safety factor for material uncertainty /;;
Safety factor for model uncertainty Y ra
- Safety factorof modeluncertainty ——
_ exp(@nfxV5)
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Large data set — log-normal PDF 2%
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Case study S 33 cases
Punching shear tests 15
Guandalini, S. And Muttoni, A., EPFL, Lausanne
Hallgren M., KTH Stockholm

Shear strength of large beams 7
Collins M.P., Toronto

Bending strength of beams 1
Debernardi P.G., Torino
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Numerical simulation by ATENA
concrete: fracture-plastic constitutive law
steel: multilinear with hardening

bond-slip interface
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Punching shear
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Range of parameters:

Modes of failure:
Brittle (concrete), ductile (steel)
With and without shear reinforcement

Concrete:
NSC, HSC

Size range:
0.1to4m scale 1:40
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Punching shear tests by

— Guandalini, S. And Muttoni, A.,, EPFL, Lausanne
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Prediction of shear strength test Torornto 2015
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Shear strength predictions
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Safety factors in ULS due to
Bending strength of normal beams by Debernardi, Torino model uncertainty NLFEA
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CONCLUSIONS ULS Uncertaities of crack models in S

Model uncertaity is reflecting the knowledge 6w = Wexperiment /Wmadel
comprised in numerical model.

Model uncertainty HW is a random variable
Validation by experiments is required.

Safety factor for model uncertainty for ‘ue - mean uncertainty, model validation
ULS of all RC structural types and sizes

Yra =1.16

It is valid for ATENA models only

VH - coefficient of variation, measure of uncertainty
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Experiments by Alejandro-Perez Caldentey xperimental crack patterns

fyk = 500 MPa
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Crack development Bond stress
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Thank You for your attention!

All specimens
all load levels
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STRUCTURAL RELIABILITY ANALYSIS IN
AEROSPACE INDUSTRY

Frank Grooteman
Frank.Grooteman@nlr.nl

National Aerospace Laboratory NLR, the Netherlands

Solving real engineering problems taking into account uncertainties requires probabilistic methods
that are robust (can handle multiple and complex limit-states), efficient (can be solved in a minimum
number of simulations) and accurate in computing small probabilities. Many probabilistic methods
have been proposed in literature over the past decades. Efficiency, accuracy and robustness are

contradicting requirements and many methods lack one of these criteria making them less useful.

Two probabilistic methods developed by NLR will be briefly presented that have as much as possible
the above characteristics. Moreover, a number of constraints will be presented related to aerospace
problems. For instance, in aerospace industry the probability of failure is 10”-5 or less and in case of
probabilistic fracture mechanics the limit-state function is discontinuous making it much harder to
solve requiring a very robust probabilistic method. Apart from the cumulative probability of failure

the hazard rate often is a required output which in many cases is much harder to compute.
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,69 Introduction

Fracture mechanics is a very important design criteria of metal aircraft structure
Considerable variation is observed in crack growth life time
— Mainly caused by:
* Scatter in initial flaw sizes Virkder
+ Scatter in loads

,69 Where is NLR located?

The Netherlands.

 Scatter in (crack growth) material properties
Variation in lifetime covered by:
— Deterministic Damage Tolerance Analysis

« (Large) initial flaw size + safety factor (2 to 3)
— Probabilistic Structural Risk Analysis

 Scatter taken into account by their distribution
functions

Cracksize

+ Computes the probability of failure (reliability) Time
+ Other application area for probabilistic analysis is composite structures
NLRFlevoiland — More scatter observed in properties than in metals
e rd
nlc . nle
gp Introduction §> MIL-STD-1530: Hazard rate
« Structural risk analysis (SRA) * MIL-STD-1530
— An evaluation of a potential structural hazard and probability of failure — Single Flight Probability of Failure (SFPoF)/Hazard rate h(t) h(t) = —f(t)
— Hazard rate h(t) and/or probability of failure F(t) over time 1-F@®)

* Probability of catastrophic failure happening in next flight

. Foanew m\lltalryFalgrcsra;; SXRA are mandatory _ Threshold risk levels
— For example F-35, KF- . .
! . <107
— Also applied more and more for existing aircrafts, e.g. F-16 i SFPoF <107 is adequate, no action needed

. -7 5
— High level description in MIL-STD-1530 and MIL-STD-882 107 < SFPoF < 103 is

. SFPoF > 10 is unacceptable
beoxvi i OO i Baimisand — Values in between — risk mitigation measures must be taken
+ Operational restrictions, inspections, repair, modification, component

replacement, aircraft retirement
— Note: threshold risk levels are indicative

Razwd rue
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gp MIL-STD-882: Cumulative failure probab
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« Based on Monte-Carlo Simulation outside a [ ___:.
sphere (Harbitz, RBIS) *
Characteristics * |

Much more efficient than MCS
Accurate
« Converges to the exact answer, in
general
Very robust
~ PBopt unknown beforehand ;
+ Very efficient adaptive approach
— NLR in-house developed method"
* Implemented in RAP++

b= [[ @™ Nz )

G(w)<0 Ny

. Structural Safety, Vol. 30,

“Grooteman, F.P; Adaptive radial-based importance sampling method for structural reliabil
|

No. 6, pp. 533-542, 2008

l(
gp Directional Simulation

Similar as MCS, but now random
directions are sampled instead of
points
Characteristics
— In general, much more efficient
than MCS
* When number of random
variables < +100
— Accurate
+ Converges to the exact answer,
in general
— Very robust in general

p = [[fwdu ”Ni (- 22()

6luyo sim i1 o E |

« Based on Directional Simulation _l
+ Improved efficiency by means of Importance ’ e
Sampling " G
— Knowledge required of important regions = =
 Limited pre-sampling
« Create a Response Surface for sampling .
in unimportant directions ;
« Performing exact simulations in
important regions (grey area, small p)
— Update Response Surface with this r
information .
+ Characteristics
Accurate, efficient and robust in general
— NLR in-house developed method"
* Implemented in RAP++ P T ST RN D SR |
“Grooteman, FP; An Adaptive Directional Importance Sampling method for structural reliabilty, Probabilistic
Engineering Mechanics, Vol. 26, pp. 134-141, 2011

0

l(
§D Quantitative Comparison Probabilistic Methods

Method Accuracy Efficiency Robustness
MCS (LHS) High Low High
DS (ARBIS) High Medium-low High
ADIS
SORM Medium-low Low
FORM Low. High Low.

Accuracy = Error in probability of failure
Efficiency = Required number of (expensive) deterministic analyses
Robustness = Ability to handle complex limit-state(s)
Multiple failure points, multiple failure functions, noisy/discontinous limit state, ...

FORM/SORM cannot handle complex limit-states

"

§9 Final remarks

* Robustness
— Failure function can be (highly) discontinuous in fracture mechanics problem
« Forinstance, in case of variable amplitude loading where failure occurs on the
same high load cycle for a RV parameter range

Accuracy

— Low probability of failure, up to 10° or below for civil aircraft, 106 for military
aircraft

Besides cumulative probability F(t) of failure, hazard rate h(t) is often required

Probability of failure over time required not only final value

Number of important/significant random variables often limited (< 15)

— Should be determined first by a relatively cheap sensitivity analysis

— Number pf RVs can be higher in case of random field discretization (e.g.
composites), but correlation is (often) unknown

— Data gathering for each RV will otherwise become even more costly
« Lack of data already biggest problem!

2




,69 Final remarks

Curse-of-dimensionality in case of meta/response surface models

— Even for a Fractional Factorial Designs

— Popular Kriging much worse, requiring (many) internal points as well
» No good choice in general

Lack of accuracy in case of meta/response surface models

— Small error in meta model yields a large error (order(s) of magnitude) in PoF

— Use of response surface only to determine important limit-state(s)

The more efficient a reliability method is, the more dependence on previous

knowledge in each step, the less the possible parallelisation of the algorithm

— High Performance Computing with many (> 1000) processors becomes cheaper
and cheaper

— Crude MCS or DS the (near) future?

— Commercial software license issues!

"

-
.

Fully engaged

Netherlands Aerospace Centre

NLR Amsterdam NLR Marknesse
Anthony Fokkerweg 2 Voorsterweg 31
1059 CM Amsterdam 8316 PR Marknesse

p)+31885113113 f) +31885113210 p)+31885114444 ) +3188511
©) info@nir.nl i) www.nirnl &) info@nle.nl i) www.nir.nl
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l.f
gp Computation of cumulative failure probability

P =P <0)= [[ rwau

G=0

+ Solution of the integral equation is complex
— Multi-dimensional integral equation
— Joint Probability Density Function f(u) unknown in general
— Limit-state G(u)=0 unknown in explicit form in general
» Requires evaluation of an external code, e.g. finite element tool, crack growth
tool, ...
* Multiple evaluations of the failure function G required
— Search for an efficient probabilistic method that requires a minimum number of
G-function evaluations (deterministic analyses)
— In general, small probabilities (< 10-3) for engineering problems
+ Robust, efficient and accurate probabilistic method needed

3




RELIABILITY ANALYSIS IN GEOTECHNICAL
PRACTICE - EXPERIENCES AND
CHALLENGES
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Reliability analysis in geotechnical engineering
— Experiences and challenges —

Timo Schweckendiek De “:(] res
Deltares Enabiing Deita e * 3R
Delft University of Technology

Bram van den Eijnden
Delft University of Technology

e 2
TUDelft

Outline

1. WHAT IS SPECIAL ABOUT
GEOTECHNICAL ENGINEERING?

2. RECENT PRACTICAL APPLICATIONS,
INCLUDING BAYESIAN UPDATING

3. SUMMARY STATE OF PRACTICE
AND CHALLENGES

Schweckendiek
(‘state of practice’)

4. RFEM FOR SLOPE STABILITY

5. SUBSET SIMULATION WITH RANDOM Van den Eijnden

FIELDS [ (‘state of the art’)
6. INSIGHTS IN FAILURE MODES WITH
HETEROGENEITY ]
24 January 2018 Reliability Analysis in Geotechnical Engineering - Experiences and Challenges 2

What is special about geotech?

*  NATURAL MATERIAL (NO QUALITY CONTROL)
-> HETEROGENEITY [

¢ LIMITED SITE INVESTIGATION = ]
-> (EPISTEMIC) UNCERTAINTY . - e

{ ) IN-SITU "ﬂ'g"jﬁj

GEOPHYSICS

m Spatial coverage

-> PARTICULARLY AMENABLE TO PROBABILISTIC TREATMENT!

Dike slope stability

Fragility curves

a-priori calculated ]
“fragility points” (with FORM) 5

cond. reliability index

water level

Reliability updating for flood defenses
- Slope stability -

:
3

Direct method (Bayes' rule):

P(F|s) =

probability density

failure evidence

Even smaller
probability than Pf!

Reliability updating for slope stability of dikes - Approach with fragility curves (background report).

http://publications.deltares.n/1230090_033.pdf

Reliability updating for flood
defenses - Piping -

Schweckendiek, T., Vrouwenvelder, A.C.W.M., & Calle, E.O F. (2013).
Updating Piping Reliability with Field Performance Observations.
Structural Safety (47), 13-23.

[T R —




Ground-structure interaction with FEM

STRUCTURALLY REINFORCED DIKES

RETAINING WALLS / QUAY WALLS

EXPERIENCES
*  main structural failure modes can typically be tackled with FORM (wall, anchor)
+  simpler approaches often too inaccurate or only for low dimensions (e.g. PEM)
*  MCS not an option due to computation time
+  Directional Sampling works if model not too heavy (and implicit treatment spatial variability)

MAIN COMUTATIONAL CHALLENGES
*  (strong) non-linearities (e.g. transition elastic -> plastic soil behaviour; uplift conditions)
+  Overall instability: no calculation response in failure domain

State-of-practice in a nutshell

* ECO AND EC7 PROVISIONS (INCL. OBSERVATIONAL METHOD)

¢ FEW COUNTRIES SEEM TO EXPLOIT THIS

* RAPIDLY GROWING INTEREST IN NL (DUE TO FLOOD DEFENSES)

*  WHAT ARE THE PRACTICAL GEOTECH APPLICATIONS WE DO SEE?

natural hazards design optimization

(e.g. GATE LNG-terminal) (hurricanes, landslides etc.)  (e.g. offshore foundations)

high-reliability installations

WE NEED:
1. ROBUST AND EFFICIENT COMPUTATIONAL METHODS
2. ‘INTERPRETABLE’ RESULTS!

From uncertainty in layers to spatial variability

EARLY EXAMPLE: THE NERLERK UNDERWATER BERM FAILURE

aaacoRE A

Hicks MA, Onisi C. Stochastic evaluation of static li ion in a i dilative sand
fill. Geotechnique, 55(2), 123-133 (2005)
24 January 2018 Reliability Analysis in Geotechnical Engineering - Experiences and Challenges 9

RFEM for slope reliability analysis (1)

¢ FINITE ELEMENT MODEL
— NO CONCEPTUAL COMPROMISE ON PHYSICAL MODEL

FOR NOW:
¢ TRESCA MATERIAL MODEL
— LINEAR ELASTIC — PERFECT PLASTIC
— € AS MATERIAL PARAMETER
¢ STATIAL VARIABILITY CHARACTERISED BY COVARIANCE FUNCTION
— STATIONARY RANDOM FIELDS

24 January 2018 Reliability Analysis in Geotechnical Engineering - Experiences and Challenges 10

RFEM for slope reliability analysis (2)

FAILURE CRITERIA

T A T

oertere

24 January 2018 Reliability Analysis in Geotechnical Engineering - Experiences and Challenges 1

Subset simulation and RFEM (1)

* CHARACTERISATION OF RANDOM FIELD Z USING COVARIANCE MATRIX C:
z = c'2y, Cl/2 = oA20T

* LIMIT STATE FUNCTION IN U-SPACE: N-DIMENSIONAL

- POSSIBLE REDUCTION OF PARAMETERS
* ADDRESS FAILURE DOMAIN USING SUBSET SIMULATION DRIVEN BY Fg

g

M

Eijnden AP van den, Hicks MA. Efficient subset si for ing the modes of i
slope failure. Computers and Geotechnics, 88, 267-280 (2017)

24 January 2018 Reliability Analysis in Geotechnical Engineering - Experiences and Challenges 12
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Subset simulation and RFEM (2)’1. ‘
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IMPROBABLE SLOPE FAILURE:

— SLOPES WITH KNOWN MEAN STRENGTH (FACTOR F)
— FAILING DUE TO UNCERTAINTY IN SPATIAL VARIABILITY (CONSTANT COV)
->PREDOMINANTLY STABLE SLOPES SHOW SHALLOW MODES OF FAILURE

24 January 2018 Reliability Analysis in Geotechnical Engineering - Experiences and Challenges 13

Application in parametric analyses (2D)
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Sliding body

¢ ~13 MILLION FEM ANALYSES o
* ~8 YEARS OF CPU TIME (PARALLEL - 2 DAYS) &

q > C

24 January 2018 Reliability Analysis in Geotechnical Engineering - Experiences and Challenges 14

Summary RFEM Deltares

Erialiing Deits Life 7-
1. A MAJOR CHALLENGE IS PROPER MODELLING 5
OF HETEROGENEITY AND EPISTEMIC
UNCERTAINTY (NOT ONLY COMPUTATIONAL)
2. SIMULATIONS REMAIN COMPUTATIONAL VERY
DEMANDING
3. DIFFICULT TO VERIFY CONVERGENCE OF
SOLUTION (POSTERIOR)

'ifU Delft

TIMO SCHWECKENDIEK

4.  DETAILED 3D ANALYSIS OF SPATIALLY VARIABLE DELTARES
SLOPES AT SMALL FAILURE PROBABILITIES DELFT UNIVERSITY OF
REMAINS A CHALLENGE TECHNOLOGY

5.  SUBSET SIMULATION MOST PROMISING SO
FAR... BRAM VAN DEN ELJNDEN

DELFT UNIVERSITY OF
TECHNOLOGY

24 January 2018 Reliability Analysis in Geotechnical Engineering - Experiences and Challenges 15
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RELIABILITY ASSESSMENTS OF CONCRETE
STRUCTURES BASED ON NONLINEAR
FINITE ELEMENT ANALYSES: HOW TO

CODIFY DESIGN METHODS?

Max Hendriks
m.a.n.hendriks@tudelft.nl
TU Delft, Netherlands & NTNU, Norway



Reliability assessments of concrete
structures based on Nonlinear Finite
Element Analyses: how to codify design
methods?

Reporting from action group 8
contributing to the

fib Model Code 2020
BNTNLU Max Hendriks — TU Delft, Netherlands & NTNU, Norway

5 TNO Workshop Computational challenges in the reliability
TUDelft assessment of engineering structures, 24 January 2018, Delft ;

What is the fib Model code 20207?

+ Short name: fib MC2020

» Update of the fib MC2010 with added
data on “existing concrete structures”

« Will serve as a basis for future codes for
concrete structures

« For national and international code

. committees, practitioners and

S NN researchers

TUDelft

fib Action Group AG8

» 20 members

» A*“core team”
— Giorgio Monti (co-convenor)
— Diego Allaix
— Morten Engen (technical secretary)
— Max Hendriks (convenor)

BNTNU
%
TUDelft

In this presentation

* Introducing the fib and the Model Code
* Issues

» Way forward
BNTNU

<3
TUDelft

fib Action Groups

» Focussing on a specific topic/section with
in the MC2020

 Action group «AG8»: focussing on
section «7.11 Verifications assisted by
numerical simulations»

BNTNU
5
TUDelft

fib AG8
Current status of the work

* Wishes for the MC2020 text of 7.11 have
been investigated.

» Working on specifications for the text.

BNTNU
%
TUDelft




«ISSUES»

BNTNU
%
TUDelft 7

Model uncertainties

1. There is not one nonlinear finite element
approach. Many approaches exist with
different choices for the
— Kinematic equations
— Constitutive equations
— Equilibrium methods & conditions

2. Very often the approaches have not
BNTNU documented explicitly

5
TUDelft .

Model uncertainties

4. The application field of the models is
wide.

5. The model uncertainty depends on the
type of failure mode. That is, it depends
on the “brittleness” of the failure.

BNTNU
%
TUDelft "

Model uncertainties

+ Defined as the ratio of observed load
resistance and finite element predictions
of the load resistance.

» That is, the main application field is
estimating the load resistance of a
concrete structure.

BNTNU

14UDeIft s

Model uncertainties

3. Some finite element models are like
“virtual experiments” and simulate
failure. Others model “only” the force
redistributions and use a “simple” failure
criterion.

BNTNLU
5
TUDelft .

Model uncertainties

13 Britile | Dhuctile
3 -« =

- o 05 !
BNTNU X gucatiy T

2
TUDelft M. Engen et al. / Structural Safety 64 (2017) 1-8 -




Model uncertainties

‘able 2-2: Statistical properties of the modelling uncertainty per fatlure mode

Failure mode Mean CoV
Bending 0.97 0.04
Flexural shear in beams L.01 .08
Shear in slabs 139 0.10
All 115 019

BNTNU

3
TUDelft Rijkswaterstaat technisch document 1016-2:2017, 2017 1

Model uncertainties

8. Sometimes based on “between-model
uncertainty” with 1 experimental outcome
and multiple model approaches:

Rexp

b =5—
" Rnvreai

(It describes the obtained uncertainty in the
BNTNU prediction if a model was selected randomly)

5
TUDelft Morten Engen, PhD thesis NTNU, 2017 15

«WAY FORWARD»

BNTNU
%
TUDelft "

Model uncertainties

6. Mainly based on lab experiments which
are always idealizations of actual
structures

7. Hard to unravel from other (material)
uncertainties

<3
TUDelft 1

Reliability methods

+ Semi-probabilistic «safety formats»
based on limited calibrations.

BNTNU
5
TUDelft .

Model uncertainties

1. Based on a “within-model uncertainty”
adopting a fixed modelling approach

oueie)
7 \RnLrEA i

<3
TUDelft Morten Engen, PhD thesis NTNU, 2017 12




Model uncertainties

2. Use fixed =
documented modelling
approaches.

E.g. based on guidelines

—or—

on advices from the

software program

developers (?)

Rijkswaterstaat technisch

R document 1016-1,2,3:2017, 2017 9

Reliability methods

1. Provide methods based on response
surfaces (??7)
— Attractive from an engineering point of view
— Can be interpreted

2. Provide methods based on calibrated
semi-probabilistic approaches

5
TUDelft ;

<3
TUDelft

5
TUDelft

Model uncertainties

3. Provide values per “type of failure
mode” and per “level of model
calibration” (?7?7?)

4. Provide the possibility to determine the
model uncertainty of a certain modelling
approach for a certain application area

(?)

Concluding remark

* Work to do between now and 2020
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