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High dimensional Euclidean space 

Volume Explosion 

In 𝑛-dimensional space, consider a hypersphere inscribed in a hypercube 

𝑉ℎ𝑦𝑝𝑒𝑟𝑠𝑝ℎ𝑒𝑟𝑒 =
𝜋𝑛 2 

Γ
𝑛
2 + 1

𝑅𝑛 

𝑉ℎ𝑦𝑝𝑒𝑟𝑐𝑢𝑏𝑒 = 2𝑅 𝑛 

𝑉ℎ𝑦𝑝𝑒𝑟𝑠𝑝ℎ𝑒𝑟𝑒
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2𝑛Γ
𝑛
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→ 0, 𝑛 → +∞ 

Volume Concentration 

Volume tends to distribute in the ‘tails’ 

 

Betancourt (2017) 



High dimensional probability space 

There may exist a typical set  

In 𝑛-dimensional space, consider the probability  

Pr (𝒒 ∈ Ω) =  𝜋(𝒒)
𝒒∈Ω

𝑑𝒒 

 

PDF 𝜋(𝒒) concentrates around its mode, 

𝑑𝒒 is much larger away from the mode 

Betancourt (2017) 



High dimensional standard normal space 

The typical set is a hyper-ring 

For 𝑛 = 400, 95% probability is 

contained within the ring 20 ± 1, 

and 99.99% is contained within the 

ring 20 ± 2.  

A trade-off between the exponentially decrease 

in probability densities with the distance from 

the mode and the exponentially increase in the 

spherical area with the distance from the mode  

Important ring is named by Katafygiotis and Zuev (2008) 
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Hyper-spherical formulation 

𝑃𝑓 =  𝜃(𝑟)𝑓𝜒(𝑟)𝑑𝑟
∞

0
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𝑀
 𝜃(𝑟𝑖)

𝑀

𝑖=1

 

                                                                                                                                       

where  𝜃 𝑟 = 𝐴𝑓(𝑟)/𝐴𝑛, 𝐴𝑛 =
𝑛𝜋𝑛/2

Γ
𝑛

2
+1

 

 

                                                          
• Valid for any dimensions 

 

• Especially convenient for high dimensional problems 

      

     𝑟𝑖 drawn from 𝑓𝜒(𝑟) is likely to have 𝑟𝑖 ∈ [ 𝑛 − 𝜀, 𝑛 + 𝜀].  

      

     Variation of  𝜃(𝑟𝑖) with 𝑟𝑖 (drawn from 𝑓𝜒(𝑟)) is expected to be small 
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Hyper-spherical formulation based 

importance sampling 

𝑃𝑓 =  𝜃(𝑟)𝑓𝜒(𝑟)𝑑𝑟
∞

0

≅
1

𝑀
 𝜃(𝑟𝑖)

𝑀

𝑖=1

 

Construct an IS density to estimate 𝜃(𝑟𝑖)  

𝜃 𝑟𝑖 =  
𝐼𝑟𝑖 𝑟𝑖𝐮 

𝐴𝑛
𝑑𝐮 

=  
𝐼𝑟𝑖 𝑟𝑖𝐮 

𝐴𝑛𝑓𝐼𝑆 𝐮 
𝑓𝐼𝑆 𝐮 𝑑𝐮 

≅
1

𝑁
 

𝐼𝑟𝑖 𝑟𝑖𝐮 𝑗

𝐴𝑛𝑓𝐼𝑆 𝐮 𝑗

𝑁

𝑗=1

 

Finally, the IS formula is derived as     

 
𝑃𝑓 ≅

1

𝑁 ∙ 𝑀
  

𝐼𝑟𝑖 𝑟𝑖𝐮 𝑗

𝐴𝑛𝑓𝐼𝑆 𝐮 𝑗

𝑁

𝑗=1

𝑀

𝑖=1

 
      

      

 
where 𝑟𝑖 drawn from 𝑓𝜒(𝑟), 𝐮 𝑗 drawn from 𝑓𝐼𝑆 𝐮  

      



Von Mises-Fisher Mixture as the IS density 

 

• Sampling by “von Mises-Fisher Mixture” model 

     

     𝑓vMFM 𝐮 ; 𝐯 =  𝛼𝑘
𝐾
𝑘=1 𝑓vMF 𝐮 ; 𝐯𝑘  

      

    where   𝛼𝑘
𝐾
𝑘=1 = 1 ，𝛼𝑘 > 0 for ∀𝑘 

 

      𝑓vMF 𝐮 = 𝑐𝑑(𝜅)𝑒
𝜅𝝁𝑇𝐮  

 

•    𝜅: concentration parameter 

•    𝝁: mean direction 

•    𝛼𝑘: weight for the k-th vMF  

 

 

 

Wang, Z., and Song J.(2016). Cross-entropy-based adaptive importance sampling using von Mises–Fisher mixture for 

high dimensional reliability analysis. Structural Safety. 59: 42-52. 
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How can we find parameters of the vMFM 

model? 

“Best” importance sampling density 

 

 

 

 

 

 

 

 

 

 

 

• Can’t use directly… if we already know Pf, we do not need MCS or IS. 

• Still helpful for improving efficiency, if h(x) is chosen in order to have a shape 

similar to that of I(x)fX(x)  
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Adaptive importance sampling by minimizing 

cross entropy 

Kullback-Leibler “Cross Entropy” (CE) 

 

 

 

• “Distance” between “best” IS density p*(x) and current one h(x) 

• One can find a good h(x) by minimizing Kullback-Leibler CE, i.e. 

 

 

 

 

 

 

• Finds the optimal values of the distribution parameter(s) v approximately by small-size 

pre-sampling, then performs final importance sampling 

• Rubinstein & Kroese (2004) used uni-modal parametric distribution for h(x;v) and 

provided updating rules to find optimal v through sampling 
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• CE-AIS-GM Algorithm 

 

 

 

 

CE-AIS with Gaussian Mixture (Kurtz & Song 2013) 

Optimal Density Near Optimal Density 

1

( ; ) π ( | , )
K

k k k

k

h N


x v x  

Kurtz, N., and Song J. (2013). Cross-entropy-based adaptive importance sampling using Gaussian mixture. Structural 

Safety. 42:35-44. 



CE-AIS with Gaussian Mixture (Kurtz & Song 2013) 
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Updating through Pre-samplings “Best” Density 



Parameter estimation for vMFM model 

𝛼𝑘 =
 𝐼𝑟𝑖 𝐮 𝑗 𝑊(𝐮 𝑗; 𝐰)Υ𝒋(𝑧𝑘)
𝑁
𝒋=1

 𝐼𝑅 𝐮 𝑗 𝑊(𝐮 𝑗; 𝐰)
𝑁
𝒋=1

 

 

𝝁𝑘 =
 𝐼𝑟𝑖 𝐮 𝑗 𝑊(𝐮 𝑗; 𝐰)Υ𝒋(𝑧𝑘)𝐮 𝑗
𝑁
𝑖=1

 𝐼𝑟𝑖 𝐮 𝑗 𝑊(𝐮 𝑗; 𝐰)Υ𝒋(𝑧𝑘)𝐮 𝑗
𝑁
𝑖=1

 

 

𝜅𝑘 ≅
𝜉𝑛 − 𝜉3

1 − 𝜉2
 

 

𝜉 =
 𝐼𝑟𝑖 𝐮 𝑗 𝑊(𝐮 𝑗; 𝐰)Υ𝒋(𝑧𝑘)𝐮 𝑗
𝑁
𝑖=1

 𝐼𝑟𝑖 𝐮 𝑗 𝑊(𝐮 𝑗; 𝐰)Υ𝒋(𝑧𝑘)
𝑁
𝑖=1

 

 

Υ𝒋(𝑧𝑘) =
𝛼𝑘𝑓vMF 𝐮 𝑗; 𝐯𝑘

 𝛼𝑘
𝐾
𝑘=1 𝑓vMF 𝐮 𝑗; 𝐯𝑘

 

 

 

 

 

where 

 

 



Procedures of Hyper-spherical importance 

sampling using vMFM 

1. Pre-sampling to obtain near-optimal (i.e. minimum CE) vMFM 

sampling density using updating rules 

2. Perform the final IS on hyper-spheres with radius drawn from the 

𝑓𝜒(𝑟) 



Example 1: Series system reliability in high-

dimension 

G1 𝐮 = 𝛽1 𝑛 − 𝐮𝑖

𝑛

𝑖=1

, G2 𝐮 = 𝛽2 𝑛 + 𝐮𝑖

𝑛

𝑖=1

 

System failure domain: G1 𝐮 ≤ 𝟎 ∪ G𝟐 𝐮 ≤ 𝟎 

𝛽1 = 𝛽2 = 3.5, 𝑛 = 300 

Updating of mean directions: 



Example 2: Nonlinear random vibration 

analysis of MDOF system 

• Discrete representation of stochastic process representing 

ground acceleration 

(in frequency domain) 

      𝑈 𝑔 𝑡 =  𝜎𝑗[u𝑗
𝑛/2
𝑗=1 cos 𝜔𝑗𝑡 + u 𝑗 sin 𝜔𝑗𝑡 ] 

      where 

       u𝑗, u 𝑗: independent standard normal random variables 

       𝜔𝑗: discretized frequency points 

       𝜎𝒋 = 2𝑆(𝜔𝑗)Δ𝜔  

       𝑆 𝜔𝑗 : two-sided power spectrum density/PSD  

       Δ𝜔: frequency step size 

 

 

 



• Instantaneous failure 

 

 

 

 

 

 

• First-passage failure (series system) 

Example 2: Updating of vMFM 
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Hyper-spherical formulation based 

extrapolation 

𝑃𝑓 =  𝜃(𝑟)𝑓𝜒(𝑟)𝑑𝑟
∞

0

 

Build an extrapolation method via writing 𝜃(𝑟) 

as 𝜃 𝑟 ≅ 𝜃 (𝑟, 𝐯) 

𝑃𝑓 =  𝜃(𝑟)𝑓𝜒(𝑟)𝑑𝑟
∞

0

≅  𝜃 (𝑟, 𝐯)𝑓𝜒(𝑟)𝑑
𝑛+ε

𝑛−ε

𝑟 

 
 

Observe that 𝜃(𝑟) grows larger if 𝑟 increases, given the safe domain is 

star-shaped with respect to the origin 

 

Concept of the extrapolation:  

• Find 𝐯 of 𝜃 (𝑟, 𝐯) given 𝜃 𝑟  estimated from large radius 𝑟 
• Estimate 𝑃𝑓 using the hyper-spherical formulation 



Model for failure ratio 𝜃 (𝑟,𝐯)  

𝜃𝑐𝑎𝑝 𝑟, α =
𝐴𝑐𝑎𝑝 𝑟, α

𝐴𝑛 𝑟
=
1

2
𝐵𝑠𝑖𝑛2α

𝑛 − 1

2
,
1

2
 

𝐵𝑠𝑖𝑛2α ∙  is a regularized incomplete beta factor 

𝜃 𝑟, α𝑘 , 𝐾 =  𝜃𝑐𝑎𝑝,𝑘 𝑟, α𝑘

𝐾

𝑘=1

=
1

2
 𝐵𝑠𝑖𝑛2α𝑘

𝑛 − 1

2
,
1

2

𝐾

𝑘=1

 

Considering the dependence of α𝑘 on 𝑟 

𝜃 𝑟, 𝑏𝑘 , 𝐾 =
1

2
 𝐵

1−
𝑏𝑘 𝑟
𝑟

2
𝑛 − 1

2
,
1

2

𝐾

𝑘=1

 

 

Assume 𝑏𝑘 𝑟  does not change dramatically with 𝑟 

• Zeroth-order hyper-spherical extrapolation method (ZO-HEM):  
     𝑏𝑘 𝑟 = 𝑏𝑘 

• First-order hyper-spherical extrapolation method (FO-HEM):  
     𝑏𝑘 𝑟 = 𝑎𝑘𝑟 + 𝑏𝑘 

Wang, Z., and Song J. (2018). Hyper-spherical extrapolation method (HEM) for general high dimensional reliability 

problems. Structural Safety, 72: 65–73.  



Probability estimation using HEM 

• ZO-HEM: 

 

𝑃𝑓 ≅  Φ(−𝑏𝑘)

𝐾

𝑘=1

 

 

• FO-HEM: 

 

𝑃𝑓 ≅
1

2
  𝐵

1− 𝑎𝑘+
𝑏𝑘
𝑟

2

𝑛 − 1

2
,
1

2

𝐾

𝑘=1

𝑓𝜒(𝑟)𝑑
𝑛+ε

𝑛−ε

𝑟 



Procedures of HEM 

• Select a sequence of 𝑚 radii 𝑟𝑖, 𝑖 = 1,… ,𝑚, 𝑟𝑖 ∈ 𝑟𝑙𝑜𝑤, 𝑟𝑢𝑝  

 

• For each 𝑟𝑖, compute the failure ratio 𝜃 𝑟𝑖  

 

• Given 𝜃 𝑟𝑖 , compute optimal values of 𝑏𝑘 and 𝐾 in for ZO-

HEM, or 𝑎𝑘, 𝑏𝑘 and 𝐾 for FO-HEM, so that the error function 

 𝑤𝑖 log 𝜃 𝑟𝑖 − log 𝜃 𝑟𝑖
2𝑚

𝑖=1  is minimized, where 𝑤𝑖 is a 

weight that puts more emphasis on more reliable data 

 

• Compute the failure probability using CDF of standard 

normal distribution or numerical integration 



Example 1: Series system reliability in high-

dimension 

G1 𝐮 = 𝛽1 𝑛 − 𝐮𝑖

𝑛

𝑖=1

, G2 𝐮 = 𝛽2 𝑛 + 𝐮𝑖

𝑛

𝑖=1

 

System failure domain: G1 𝐮 ≤ 𝟎 ∪ G𝟐 𝐮 ≤ 𝟎 

𝛽0 
ZO-HEM FO-HEM Exact 

β  c.o.v 
Error 

(%) 
β  c.o.v 

Error 

(%) 
β 

3.0 2.784 0.051 0.07 2.800 0.053 0.65 2.782 

3.5 3.328 0.022 0.51 3.338 0.058 0.82 3.311 

4.0 3.820 0.019 -0.33 3.846 0.043 0.33 3.833 

4.5 4.366 0.009 0.36 4.381 0.025 0.71 4.350 

5.0 4.906 0.052 0.86 4.894 0.051 0.59 4.865 



Example 1: Series system reliability in high-

dimension 
𝜃 𝑟  versus 𝑟 curves for 𝛽0 = 5.0 



Example 2: Nonlinear random vibration 

analysis of SDOF system 

SDOF Bouc-Wen oscillator subjected  

to white noise 

   

 

 

Thres

hold 

(m) 

ZO-HEM FO-HEM Exact 

β  c.o.v 
Error 

(%) 
β  c.o.v 

Error 

(%) 
β 

0.08 2.480 0.025 -2.95 2.518 0.043 -1.48 2.556 

0.09 2.953 0.035 -2.72 2.971 0.048 -2.13 3.036 

0.10 3.401 0.031 -3.92 3.475 0.037 -1.84 3.540 



Example 2: Nonlinear random vibration 

analysis of SDOF system 

𝜃 𝑟  versus 𝑟 curves for 0.10 (m) threshold 
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Future research 

• [Possibilities] Integration with Hamiltonian Monte Carlo based subset 

simulation  

 

Wang Z, Broccardo M, Song J. Hamiltonian Monte Carlo Methods for Subset Simulation in Reliability 

Analysis. arXiv:1706.01435  

 

 

 

 

 

 

 



Summary 

• [Summary 1] A hyper-spherical formulation to perform reliability analysis in 

high dimensional Gaussian space is proposed.  

 

• [Summary 2] An importance sampling method using the hyper-spherical 

formulation in conjunction with von Mises-Fisher mixture distribution is 

proposed. 

 

• [Summary 3] An extrapolation method using the the hyper-spherical 

formulation is proposed. 

 

 

 

 

Wang, Z., and Song J.(2016). Cross-entropy-based adaptive importance sampling using von Mises–Fisher mixture for 

high dimensional reliability analysis. Structural Safety. 59: 42-52. 

Wang, Z., and Song J. (2018). Hyper-spherical extrapolation method (HEM) for general high dimensional reliability 

problems. Structural Safety, 72: 65–73.  
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