Hyper－spherical Importance Sampling and Extrapolation for High Dimensional Reliability Problems

Junho SONG

Professor，Ph．D．
Department of Civil \＆Environmental Engineering Seoul National University，S．Korea

Ziqi WANG＊／王子琦
Assistant Professor，Ph．D． Earthquake Engineering Research \＆Test Center Guangzhou University，China

High dimensional Euclidean space

Volume Explosion

In n-dimensional space, consider a hypersphere inscribed in a hypercube
$V_{\text {hypersphere }}=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)} R^{n}$
$V_{\text {hypercube }}=(2 R)^{n}$
$\frac{V_{\text {hypersphere }}}{V_{\text {hypercube }}}=\frac{\pi^{n / 2}}{2^{n} \Gamma\left(\frac{n}{2}+1\right)} \rightarrow 0, n \rightarrow+\infty$
Volume Concentration

Volume tends to distribute in the 'tails'

Betancourt (2017)

High dimensional probability space

There may exist a typical set

In n-dimensional space, consider the probability
$\operatorname{Pr}(\boldsymbol{q} \in \Omega)=\int_{\boldsymbol{q} \in \Omega} \pi(\boldsymbol{q}) d \boldsymbol{q}$
Betancourt (2017)
PDF $\pi(\boldsymbol{q})$ concentrates around its mode, $d \boldsymbol{q}$ is much larger away from the mode

$\mathrm{lq}-\mathrm{q}_{\text {Mode }} \mathrm{l}$

High dimensional standard normal space

The typical set is a hyper-ring

A trade-off between the exponentially decrease in probability densities with the distance from the mode and the exponentially increase in the spherical area with the distance from the mode

For $n=400,95 \%$ probability is contained within the ring 20 ± 1, and 99.99% is contained within the ring 20 ± 2.

Important ring is named by Katafygiotis and Zuev (2008)

Contents

Contents

Hyper-spherical formulation

Hyper-spherical formulation based inportance sampling

Hyper-spherical iornulation based extrapolation

Summary and future research

Hyper-spherical formulation

$$
P_{f}=\int_{0}^{\infty} \theta(r) f_{\chi}(r) d r \cong \frac{1}{M} \sum_{i=1}^{M} \theta\left(r_{i}\right)
$$

where $\theta(r)=A_{f}(r) / A_{n}, A_{n}=\frac{n \pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)}$

- Valid for any dimensions
- Especially convenient for high dimensional problems
r_{i} drawn from $f_{\chi}(r)$ is likely to have $r_{i} \in[\sqrt{n}-\varepsilon, \sqrt{n}+\varepsilon]$.
Variation of $\theta\left(r_{i}\right)$ with r_{i} (drawn from $f_{\chi}(r)$) is expected to be small

Contents

Hyper-spherical formulation

Hyper-spherical formulation based importance sampling

Bews. Today
Hyperspherical formulation based extrapolation

Hyper-spherical formulation based importance sampling

$$
P_{f}=\int_{0}^{\infty} \theta(r) f_{\chi}(r) d r \cong \frac{1}{M} \sum_{i=1}^{M} \theta\left(r_{i}\right)
$$

Construct an IS density to estimate $\theta\left(r_{i}\right)$ $\theta\left(r_{i}\right)=\int \frac{I_{r_{i}}\left(r_{i} \overline{\mathbf{u}}\right)}{A_{n}} d \overline{\mathbf{u}}$

$$
=\int \frac{I_{r_{i}}\left(r_{i} \overline{\mathbf{u}}\right)}{A_{n} f_{I S}(\overline{\mathbf{u}})} f_{I S}(\overline{\mathbf{u}}) d \overline{\mathbf{u}}
$$

$$
\cong \frac{1}{N} \sum_{j=1}^{N} \frac{I_{r_{i}}\left(r_{i} \overline{\mathbf{u}}_{j}\right)}{A_{n} f_{I S}\left(\overline{\mathbf{u}}_{j}\right)}
$$

Finally, the IS

$$
P_{f} \cong \frac{1}{N \cdot M} \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{I_{r_{i}}\left(r_{i} \overline{\mathbf{u}}_{j}\right)}{A_{n} f_{I S}\left(\overline{\mathbf{u}}_{j}\right)}
$$

where r_{i} drawn from $f_{\chi}(r), \overline{\mathbf{u}}_{j}$ drawn from $f_{I S}(\overline{\mathbf{u}})$

Von Mises-Fisher Mixture as the IS density

Wang, Z., and Song J.(2016). Cross-entropy-based adaptive importance sampling using von Mises-Fisher mixture for high dimensional reliability analysis. Structural Safety. 59: 42-52.

- Sampling by "von Mises-Fisher Mixture" model

$$
\begin{aligned}
& f_{\mathrm{vMFM}}(\overline{\mathbf{u}} ; \mathbf{v})=\sum_{k=1}^{K} \alpha_{k} f_{\mathrm{vMF}}\left(\overline{\mathbf{u}} ; \mathbf{v}_{k}\right) \\
& \text { where } \sum_{k=1}^{K} \alpha_{k}=1, \alpha_{k}>0 \text { for } \forall k
\end{aligned}
$$

$$
f_{\mathrm{vMF}}(\overline{\mathbf{u}})=c_{d}(\kappa) e^{\kappa \boldsymbol{\mu}^{T} \overline{\mathbf{u}}}
$$

- κ : concentration parameter
- $\boldsymbol{\mu}$: mean direction
- α_{k} : weight for the k-th vMF

How can we find parameters of the vMFM model?

"Best" importance sampling density

$$
p^{*}(\mathbf{x})=\frac{|H(\mathbf{x})|}{\int|H(\mathbf{x})| d \mathbf{x}}=\frac{I(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x})}{P_{f}}
$$

- Can't use directly... if we already know P_{f}, we do not need MCS or IS.
- Still helpful for improving efficiency, if $h(\mathbf{x})$ is chosen in order to have a shape similar to that of $I(\mathbf{x}) f_{X}(\mathbf{x})$

Adaptive importance sampling by minimizing cross entropy

Kullback-Leibler "Cross Entropy" (CE)

$$
D\left(p^{*}, h\right)=\int p^{*}(\mathbf{x}) \ln p^{*}(\mathbf{x}) d \mathbf{x}-\int p^{*}(\mathbf{x}) \ln h(\mathbf{x}) d \mathbf{x}
$$

- "Distance" between "best" IS density $p^{*}(\mathbf{x})$ and current one $h(\mathbf{x})$
- One can find a good $h(\mathbf{x})$ by minimizing Kullback-Leibler CE, i.e.

$$
\begin{aligned}
\underset{\mathbf{v}}{\arg \min } D\left(p^{*}, h(\mathbf{v})\right) & =\underset{\mathbf{v}}{\arg \min }\left[\int p^{*}(\mathbf{x}) \ln p^{*}(\mathbf{x}) d \mathbf{x}-\int p^{*}(\mathbf{x}) \ln h(\mathbf{x} ; \mathbf{v}) d \mathbf{x}\right] \\
& =\underset{\mathbf{v}}{\arg \max } \int p^{*}(\mathbf{x}) \ln h(\mathbf{x} ; \mathbf{v}) d \mathbf{x} \\
& =\underset{\mathbf{v}}{\arg \max } \int I(\mathbf{x}) f_{\mathbf{x}}(\mathbf{x}) \ln h(\mathbf{x} ; \mathbf{v}) d \mathbf{x}
\end{aligned}
$$

- Finds the optimal values of the distribution parameter(s) \mathbf{v} approximately by small-size pre-sampling, then performs final importance sampling
- Rubinstein \& Kroese (2004) used uni-modal parametric distribution for $h(\mathbf{x} ; \mathbf{v})$ and provided updating rules to find optimal \mathbf{v} through sampling

CE-AIS with Gaussian Mixture (Kurtz \& Song 2013)

Kurtz, N., and Song J. (2013). Cross-entropy-based adaptive importance sampling using Gaussian mixture. Structural Safety. 42:35-44.

- CE-AIS-GM Algorithm $h(\mathbf{x} ; \mathbf{v})=\sum_{k=1}^{K} \pi_{k} N\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$

CE-AIS with Gaussian Mixture (Kurtz \& Song 2013)

Parameter estimation for vMFM model

$$
\begin{aligned}
& \alpha_{k}=\frac{\sum_{j=1}^{N} I_{r_{i}}\left(\overline{\mathbf{u}}_{j}\right) W\left(\overline{\mathbf{u}}_{j} ; \mathbf{w}\right) \Upsilon_{j}\left(z_{k}\right)}{\sum_{j=1}^{N} I_{R}\left(\overline{\mathbf{u}}_{j}\right) W\left(\overline{\mathbf{u}}_{j} ; \mathbf{w}\right)} \\
& \boldsymbol{\mu}_{k}=\frac{\sum_{i=1}^{N} I_{r_{i}}\left(\overline{\mathbf{u}}_{j}\right) W\left(\overline{\mathbf{u}}_{j} ; \mathbf{w}\right) \Upsilon_{j}\left(z_{k}\right) \overline{\mathbf{u}}_{j}}{\left\|\sum_{i=1}^{N} I_{r_{i}}\left(\overline{\mathbf{u}}_{j}\right) W\left(\overline{\mathbf{u}}_{j} ; \mathbf{w}\right) \Upsilon_{j}\left(z_{k}\right) \overline{\mathbf{u}}_{j}\right\|} \\
& \kappa_{k} \cong \frac{\xi n-\xi^{3}}{1-\xi^{2}} \\
& \text { where }
\end{aligned}
$$

$$
\begin{aligned}
& \xi=\frac{\left\|\sum_{i=1}^{N} I_{r_{i}}\left(\overline{\mathbf{u}}_{j}\right) W\left(\overline{\mathbf{u}}_{j} ; \mathbf{w}\right) \Upsilon_{j}\left(z_{k}\right) \overline{\mathbf{u}}_{j}\right\|}{\sum_{i=1}^{N} I_{r_{i}}\left(\overline{\mathbf{u}}_{j}\right) W\left(\overline{\mathbf{u}}_{j} ; \mathbf{w}\right) \Upsilon_{j}\left(z_{k}\right)} \\
& \Upsilon_{j}\left(z_{k}\right)=\frac{\alpha_{k} f_{\mathrm{vMF}}\left(\overline{\mathbf{u}}_{j} ; \mathbf{v}_{k}\right)}{\sum_{k=1}^{K} \alpha_{k} f_{\mathrm{VMF}}\left(\overline{\mathbf{u}}_{j} ; \mathbf{V}_{k}\right)}
\end{aligned}
$$

Procedures of Hyper-spherical importance sampling using vMFM

1. Pre-sampling to obtain near-optimal (i.e. minimum CE) vMFM sampling density using updating rules
2. Perform the final IS on hyper-spheres with radius drawn from the $f_{\chi}(r)$

Example 1: Series system reliability in highdimension

$\mathrm{G}_{1}(\mathbf{u})=\beta_{1} \sqrt{n}-\sum_{i=1}^{n} \mathbf{u}_{i}, \mathrm{G}_{2}(\mathbf{u})=\beta_{2} \sqrt{n}+\sum_{i=1}^{n} \mathbf{u}_{i}$
System failure domain: $\mathrm{G}_{1}(\mathbf{u}) \leq \mathbf{0} \cup \mathrm{G}_{2}(\mathbf{u}) \leq \mathbf{0}$
$\beta_{1}=\beta_{2}=3.5, n=300$
Updating of mean directions:

Example 2: Nonlinear random vibration analysis of MDOF system

- Discrete representation of stochastic process representing ground acceleration (in frequency domain)
$\ddot{U}_{g}(t)=\sum_{j=1}^{n / 2} \sigma_{j}\left[\mathrm{u}_{j} \cos \left(\omega_{j} t\right)+\hat{\mathrm{u}}_{j} \sin \left(\omega_{j} t\right)\right]$
where
$\mathrm{u}_{j}, \hat{\mathrm{u}}_{j}$: independent standard normal random variables
ω_{j} : discretized frequency points
$\sigma_{j}=\sqrt{2 S\left(\omega_{j}\right) \Delta \omega}$
$S\left(\omega_{j}\right)$: two-sided power spectrum density/PSD
$\Delta \omega$: frequency step size

Example 2: Updating of vMFM

- Instantaneous failure

- First-passage failure (series system)

Contents

Hyper-spherical formulation

Hyper-spherical formulation based inportance sampling

Hyper-spherical formulation based extrapolation

Hyper-spherical formulation based extrapolation

$$
P_{f}=\int_{0}^{\infty} \theta(r) f_{\chi}(r) d r
$$

Build an extrapolation method via writing $\theta(r)$ as $\theta(r) \cong \hat{\theta}(r, \mathrm{v})$
$P_{f}=\int_{0}^{\infty} \theta(r) f_{\chi}(r) d r$

$$
\cong \int_{\sqrt{n}-\varepsilon}^{\sqrt{n}+\varepsilon} \hat{\theta}(r, \mathbf{v}) f_{\chi}(r) d r
$$

Observe that $\theta(r)$ grows larger if r increases, given the safe domain is star-shaped with respect to the origin

Concept of the extrapolation:

- Find \mathbf{v} of $\hat{\theta}(r, \mathbf{v})$ given $\theta(r)$ estimated from large radius r
- Estimate P_{f} using the hyper-spherical formulation

Model for failure ratio $\hat{\theta}(r, v)$

Wang, Z., and Song J. (2018). Hyper-spherical extrapolation method (HEM) for general high dimensional reliability problems. Structural Safety, 72: 65-73.
$\theta_{c a p}(r, \alpha)=\frac{A_{c a p}(r, \alpha)}{A_{n}(r)}=\frac{1}{2} B_{\sin ^{2} \alpha}\left(\frac{n-1}{2}, \frac{1}{2}\right)$
$B_{\sin ^{2} \alpha}(\cdot)$ is a regularized incomplete beta factor
$\hat{\theta}\left(r, \alpha_{k}, K\right)=\sum_{k=1}^{K} \theta_{c a p, k}\left(r, \alpha_{k}\right)=\frac{1}{2} \sum_{k=1}^{K} B_{\sin ^{2} \alpha_{k}}\left(\frac{n-1}{2}, \frac{1}{2}\right)$
Considering the dependence of α_{k} on r
$\hat{\theta}\left(r, b_{k}, K\right)=\frac{1}{2} \sum_{k=1}^{K} B_{1-\left[\frac{b_{k}(r)}{r}\right]^{2}}\left(\frac{n-1}{2}, \frac{1}{2}\right)$

Assume $b_{k}(r)$ does not change dramatically with r

- Zeroth-order hyper-spherical extrapolation method (ZO-HEM):

$$
b_{k}(r)=b_{k}
$$

- First-order hyper-spherical extrapolation method (FO-HEM):

$$
b_{k}(r)=a_{k} r+b_{k}
$$

Probability estimation using HEM

- ZO-HEM:

$$
P_{f} \cong \sum_{k=1}^{K} \Phi\left(-b_{k}\right)
$$

- FO-HEM:

$$
P_{f} \cong \frac{1}{2} \int_{\sqrt{n}-\varepsilon}^{\sqrt{n}+\varepsilon} \sum_{k=1}^{K} B_{1-\left(a_{k}+\frac{b_{k}}{r}\right)^{2}}\left(\frac{n-1}{2}, \frac{1}{2}\right) f_{\chi}(r) d r
$$

Procedures of HEM

- Select a sequence of m radii $r_{i}, i=1, \ldots, m, r_{i} \in\left[r_{\text {low }}, r_{u p}\right]$
- For each r_{i}, compute the failure ratio $\hat{\theta}\left(r_{i}\right)$
- Given $\hat{\theta}\left(r_{i}\right)$, compute optimal values of b_{k} and K in for ZOHEM, or a_{k}, b_{k} and K for FO-HEM, so that the error function $\sum_{i=1}^{m} w_{i}\left[\log \hat{\theta}\left(r_{i}\right)-\log \theta\left(r_{i}\right)\right]^{2}$ is minimized, where w_{i} is a weight that puts more emphasis on more reliable data
- Compute the failure probability using CDF of standard normal distribution or numerical integration

Example 1: Series system reliability in highdimension

$\mathrm{G}_{1}(\mathbf{u})=\beta_{1} \sqrt{n}-\sum_{i=1}^{n} \mathbf{u}_{i}, \mathrm{G}_{2}(\mathbf{u})=\beta_{2} \sqrt{n}+\sum_{i=1}^{n} \mathbf{u}_{i}$
System failure domain: $\mathrm{G}_{1}(\mathbf{u}) \leq \mathbf{0} \cup \mathrm{G}_{\mathbf{2}}(\mathbf{u}) \leq \mathbf{0}$

β_{0}	ZO-HEM			FO-HEM			Exact
3.0	2.784	0.051	0.07	2.800	0.053	0.65	2.782
3.5	3.328	0.022	0.51	3.338	0.058	0.82	3.311
4.0	3.820	0.019	-0.33	3.846	0.043	0.33	3.833
4.5	4.366	0.009	0.36	4.381	0.025	0.71	4.350
5.0	4.906	0.052	0.86	4.894	0.051	0.59	4.865

Example 1: Series system reliability in highdimension

$\theta(r)$ versus r curves for $\beta_{0}=5.0$

Example 2: Nonlinear random vibration analysis of SDOF system

SDOF Bouc-Wen oscillator subjected to white noise

Thres hold (\mathbf{m})	ZO-HEM			FO-HEM			Exact
0.08	2.480	0.025	-2.95	2.518	0.043	-1.48	2.556
0.09	2.953	0.035	-2.72	2.971	0.048	-2.13	3.036
0.09	$\hat{\beta}$	c.0.v	Error $(\%)$	β			
0.10	3.401	0.031	-3.92	3.475	0.037	-1.84	3.540

Example 2: Nonlinear random vibration analysis of SDOF system

$\theta(r)$ versus r curves for $0.10(\mathrm{~m})$ threshold

Contents

Hyper-spherical formulation

Hyper-spherical formulation based inportance sampling

Summary and future research

Future research

- [Possibilities] Integration with Hamiltonian Monte Carlo based subset simulation

Wang Z, Broccardo M, Song J. Hamiltonian Monte Carlo Methods for Subset Simulation in Reliability Analysis. arXiv:1706.01435

Summary

- [Summary 1] A hyper-spherical formulation to perform reliability analysis in high dimensional Gaussian space is proposed.
- [Summary 2] An importance sampling method using the hyper-spherical formulation in conjunction with von Mises-Fisher mixture distribution is proposed.
- [Summary 3] An extrapolation method using the the hyper-spherical formulation is proposed.

Wang, Z., and Song J.(2016). Cross-entropy-based adaptive importance sampling using von Mises-Fisher mixture for high dimensional reliability analysis. Structural Safety. 59: 42-52.

Wang, Z., and Song J. (2018). Hyper-spherical extrapolation method (HEM) for general high dimensional reliability problems. Structural Safety, 72: 65-73.

ICASP13
 Seoul National University 2019 http://wwwaicasp13.snu_ac.kr

http://systemreliability.wordpress.com junhosong@snu.ac.kr

Structural \& System Reliability Group
Convergence Research Center for Disaster-Hazard Resilience

