

TNO Workshop: Computational Challenges in the Reliability Assessment of Engineering Structures Delft, The Netherlands

Hyper-spherical Importance Sampling and Extrapolation for High Dimensional Reliability Problems

Junho SONG

Professor, Ph.D. Department of Civil & Environmental Engineering Seoul National University, S. Korea

Ziqi WANG*/王子琦

Assistant Professor, Ph.D. Earthquake Engineering Research & Test Center Guangzhou University, China

High dimensional Euclidean space

Volume Explosion

In *n*-dimensional space, consider a hypersphere inscribed in a hypercube

$$V_{hypersphere} = \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)} R^n$$

$$V_{hypercube} = (2R)^n$$

$$\frac{V_{hypersphere}}{V_{hypercube}} = \frac{\pi^{n/2}}{2^n \Gamma\left(\frac{n}{2}+1\right)} \to 0, n \to +\infty$$

Volume Concentration

Volume tends to distribute in the 'tails'

Betancourt (2017)

High dimensional probability space

There may exist a typical set

In *n*-dimensional space, consider the probability

 $\Pr\left(\boldsymbol{q}\in\Omega\right) = \int_{\boldsymbol{q}\in\Omega} \pi(\boldsymbol{q}) \, d\boldsymbol{q}$

PDF $\pi(q)$ concentrates around its mode, dq is much larger away from the mode

High dimensional standard normal space

The typical set is a hyper-ring

A trade-off between the exponentially decrease in probability densities with the distance from the mode and the exponentially increase in the spherical area with the distance from the mode

> For n = 400, 95% probability is contained within the ring 20 ± 1 , and 99.99% is contained within the ring 20 ± 2 .

Important ring is named by Katafygiotis and Zuev (2008)

Contents

Contents

Hyper-spherical formulation

$$P_{f} = \int_{0}^{\infty} \theta(r) f_{\chi}(r) dr \approx \frac{1}{M} \sum_{i=1}^{M} \theta(r_{i})$$

where $\theta(r) = A_{f}(r) / A_{n}, A_{n} = \frac{n\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}$
• Valid for any dimensions

▲u_j

• Especially convenient for high dimensional problems

 r_i drawn from $f_{\chi}(r)$ is likely to have $r_i \in [\sqrt{n} - \varepsilon, \sqrt{n} + \varepsilon]$.

Variation of $\theta(r_i)$ with r_i (drawn from $f_{\chi}(r)$) is expected to be small

Contents

Hyper-spherical formulation based importance sampling

limit-state surface

 $P_f = \theta(R) = A_f / A_f$

►u_i

Important Ring

R-u

$$P_f = \int_0^\infty \theta(r) f_{\chi}(r) dr \cong \frac{1}{M} \sum_{i=1}^M \theta(r_i)$$

Construct an IS density to estimate $\theta(r_i)$

$$\theta(r_i) = \int \frac{l_{r_i}(r_i \overline{\mathbf{u}})}{A_n} d\overline{\mathbf{u}}$$

$$= \int \frac{l_{r_i}(r_i \overline{\mathbf{u}})}{A_n f_{IS}(\overline{\mathbf{u}})} f_{IS}(\overline{\mathbf{u}}) d\overline{\mathbf{u}}$$

$$\cong \frac{1}{N} \sum_{j=1}^N \frac{l_{r_i}(r_i \overline{\mathbf{u}}_j)}{A_n f_{IS}(\overline{\mathbf{u}}_j)}$$
Finally, the IS
$$P_f \cong \frac{1}{N \cdot M} \sum_{i=1}^M \sum_{j=1}^N \frac{l_{r_i}(r_i \overline{\mathbf{u}}_j)}{A_n f_{IS}(\overline{\mathbf{u}}_j)}$$

where r_i drawn from $f_{\chi}(r)$, $\overline{\mathbf{u}}_j$ drawn from $f_{IS}(\overline{\mathbf{u}})$

Von Mises-Fisher Mixture as the IS density

Wang, Z., and Song J.(2016). Cross-entropy-based adaptive importance sampling using von Mises–Fisher mixture for high dimensional reliability analysis. *Structural Safety*. 59: 42-52.

• Sampling by "von Mises-Fisher Mixture" model

$$f_{\text{vMFM}}(\overline{\mathbf{u}}; \mathbf{v}) = \sum_{k=1}^{K} \alpha_k f_{\text{vMF}}(\overline{\mathbf{u}}; \mathbf{v}_k)$$

where
$$\sum_{k=1}^{K} \alpha_k = 1$$
 , $\alpha_k > 0$ for $\forall k$

$$f_{\rm vMF}(\overline{\mathbf{u}}) = c_d(\kappa) e^{\kappa \mu^T \overline{\mathbf{u}}}$$

- *κ*: concentration parameter
- μ : mean direction
- α_k : weight for the *k*-th vMF

How can we find parameters of the vMFM model?

"Best" importance sampling density

$$p^{*}(\mathbf{x}) = \frac{|H(\mathbf{x})|}{\int |H(\mathbf{x})| d\mathbf{x}} = \frac{I(\mathbf{x}) f_{\mathbf{x}}(\mathbf{x})}{P_{f}}$$

- Can't use directly... if we already know P_{f} , we do not need MCS or IS.
- Still helpful for improving efficiency, if $h(\mathbf{x})$ is chosen in order to have a shape similar to that of $I(\mathbf{x})f_X(\mathbf{x})$

Adaptive importance sampling by minimizing cross entropy

Kullback-Leibler "Cross Entropy" (CE)

$$D(p^*,h) = \int p^*(\mathbf{x}) \ln p^*(\mathbf{x}) d\mathbf{x} - \int p^*(\mathbf{x}) \ln h(\mathbf{x}) d\mathbf{x}$$

- "Distance" between "best" IS density $p^*(\mathbf{x})$ and current one $h(\mathbf{x})$
- One can find a good $h(\mathbf{x})$ by minimizing Kullback-Leibler CE, i.e.

$$\arg\min_{\mathbf{v}} D(p^*, h(\mathbf{v})) = \arg\min_{\mathbf{v}} \left[\int p^*(\mathbf{x}) \ln p^*(\mathbf{x}) d\mathbf{x} - \int p^*(\mathbf{x}) \ln h(\mathbf{x}; \mathbf{v}) d\mathbf{x} \right]$$
$$= \arg\max_{\mathbf{v}} \int p^*(\mathbf{x}) \ln h(\mathbf{x}; \mathbf{v}) d\mathbf{x}$$
$$= \arg\max_{\mathbf{v}} \int I(\mathbf{x}) f_{\mathbf{x}}(\mathbf{x}) \ln h(\mathbf{x}; \mathbf{v}) d\mathbf{x}$$

- Finds the optimal values of the distribution parameter(s) v approximately by small-size pre-sampling, then performs final importance sampling
- Rubinstein & Kroese (2004) used uni-modal parametric distribution for h(x;v) and provided updating rules to find optimal v through sampling

CE-AIS with Gaussian Mixture (Kurtz & Song 2013)

Kurtz, N., and Song J. (2013). Cross-entropy-based adaptive importance sampling using Gaussian mixture. *Structural Safety*. 42:35-44.

CE-AIS with Gaussian Mixture (Kurtz & Song 2013)

Parameter estimation for vMFM model

$$\alpha_{k} = \frac{\sum_{j=1}^{N} I_{r_{i}}(\overline{\mathbf{u}}_{j}) W(\overline{\mathbf{u}}_{j}; \mathbf{w}) \Upsilon_{j}(z_{k})}{\sum_{j=1}^{N} I_{R}(\overline{\mathbf{u}}_{j}) W(\overline{\mathbf{u}}_{j}; \mathbf{w})}$$

$$\boldsymbol{\mu}_{k} = \frac{\sum_{i=1}^{N} I_{\boldsymbol{r}_{i}}(\overline{\mathbf{u}}_{j}) W(\overline{\mathbf{u}}_{j}; \mathbf{w}) \Upsilon_{\boldsymbol{j}}(z_{k}) \overline{\mathbf{u}}_{j}}{\left\|\sum_{i=1}^{N} I_{\boldsymbol{r}_{i}}(\overline{\mathbf{u}}_{j}) W(\overline{\mathbf{u}}_{j}; \mathbf{w}) \Upsilon_{\boldsymbol{j}}(z_{k}) \overline{\mathbf{u}}_{j}\right\|}$$

$$\kappa_k \cong \frac{\xi n - \xi^3}{1 - \xi^2}$$

where

$$\xi = \frac{\left\|\sum_{i=1}^{N} I_{r_i}(\overline{\mathbf{u}}_j) W(\overline{\mathbf{u}}_j; \mathbf{w}) \Upsilon_j(z_k) \overline{\mathbf{u}}_j\right\|}{\sum_{i=1}^{N} I_{r_i}(\overline{\mathbf{u}}_j) W(\overline{\mathbf{u}}_j; \mathbf{w}) \Upsilon_j(z_k)}$$

$$\Upsilon_{j}(z_{k}) = \frac{\alpha_{k} f_{\text{VMF}}(\overline{\mathbf{u}}_{j}; \mathbf{v}_{k})}{\sum_{k=1}^{K} \alpha_{k} f_{\text{VMF}}(\overline{\mathbf{u}}_{j}; \mathbf{v}_{k})}$$

Procedures of Hyper-spherical importance sampling using vMFM

- Pre-sampling to obtain near-optimal (i.e. minimum CE) vMFM sampling density using updating rules
- 2. Perform the final IS on hyper-spheres with radius drawn from the $f_{\chi}(r)$

Example 1: Series system reliability in highdimension

$$G_1(\mathbf{u}) = \beta_1 \sqrt{n} - \sum_{i=1}^n \mathbf{u}_i , G_2(\mathbf{u}) = \beta_2 \sqrt{n} + \sum_{i=1}^n \mathbf{u}_i$$

System failure domain: $G_1(u) \le 0 \cup G_2(u) \le 0$

 $\beta_1 = \beta_2 = 3.5$, n = 300

Updating of mean directions:

Example 2: Nonlinear random vibration analysis of MDOF system

 Discrete representation of stochastic process representing ground acceleration (in frequency domain)

$$\ddot{U}_g(t) = \sum_{j=1}^{n/2} \sigma_j [u_j \cos(\omega_j t) + \hat{u}_j \sin(\omega_j t)]$$

where

 u_i , \hat{u}_i : independent standard normal random variables $m = 6 \times 10^4 kg$ m $k_4 = 2 \times 10^7 N/m$ ω_i : discretized frequency points m $\sigma_{i} = \sqrt{2S(\omega_{i})\Delta\omega}$ $k_3 = 4 \times 10^7 N/m$ $S(\omega_i)$: two-sided power spectrum density/PSD m $k_2 = 5 \times 10^7 N/m$ $\Delta\omega$: frequency step size m $k_1 = 6 \times 10^7 N/m$ mhn -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Deformation (m)

Example 2: Updating of vMFM

Instantaneous failure

• First-passage failure (series system)

Contents

Hyper-spherical formulation based extrapolation

$$P_f = \int_0^\infty \theta(r) f_{\chi}(r) dr$$

Build an extrapolation method via writing $\theta(r)$ as $\theta(r) \cong \hat{\theta}(r, \mathbf{v})$

$$P_f = \int_0^\infty \theta(r) f_{\chi}(r) dr$$
$$\cong \int_{\sqrt{n-\varepsilon}}^{\sqrt{n+\varepsilon}} \widehat{\theta}(r, \mathbf{v}) f_{\chi}(r) dr$$

Observe that $\theta(r)$ grows larger if r increases, given the safe domain is star-shaped with respect to the origin

limit-state surface

 $q = \theta(R) = A$

Important Ring

Concept of the extrapolation:

- Find **v** of $\hat{\theta}(r, \mathbf{v})$ given $\theta(r)$ estimated from large radius r
- Estimate P_f using the hyper-spherical formulation

Model for failure ratio $\hat{\theta}(r, \mathbf{v})$

Wang, Z., and Song J. (2018). Hyper-spherical extrapolation method (HEM) for general high dimensional reliability problems. Structural Safety, 72: 65–73.

$$\theta_{cap}(r,\alpha) = \frac{A_{cap}(r,\alpha)}{A_n(r)} = \frac{1}{2}B_{sin^2\alpha}\left(\frac{n-1}{2},\frac{1}{2}\right)$$

 $B_{sin^2\alpha}(\cdot)$ is a regularized incomplete beta factor

$$\hat{\theta}(r, \alpha_k, K) = \sum_{k=1}^{K} \theta_{cap,k}(r, \alpha_k) = \frac{1}{2} \sum_{k=1}^{K} B_{sin^2\alpha_k}\left(\frac{n-1}{2}, \frac{1}{2}\right)$$

Considering the dependence of α_k on r

$$\hat{\theta}(r, b_k, K) = \frac{1}{2} \sum_{k=1}^{K} B_{1 - \left[\frac{b_k(r)}{r}\right]^2} \left(\frac{n-1}{2}, \frac{1}{2}\right)$$

Assume $b_k(r)$ does not change dramatically with r

• Zeroth-order hyper-spherical extrapolation method (ZO-HEM):

$$b_k(r) = \frac{b_k}{k}$$

• First-order hyper-spherical extrapolation method (FO-HEM): $h_{r}(r) = a_{r}r + b_{r}$

$$b_k(r) = \frac{a_k r + b_k}{b_k}$$

Probability estimation using HEM

• ZO-HEM:

$$P_f \cong \sum_{k=1}^K \Phi(-b_k)$$

• FO-HEM:

$$P_{f} \cong \frac{1}{2} \int_{\sqrt{n-\epsilon}}^{\sqrt{n+\epsilon}} \sum_{k=1}^{K} B_{1-\left(a_{k}+\frac{b_{k}}{r}\right)^{2}} \left(\frac{n-1}{2}, \frac{1}{2}\right) f_{\chi}(r) dr$$

Procedures of HEM

- Select a sequence of *m* radii r_i , i = 1, ..., m, $r_i \in [r_{low}, r_{up}]$
- For each r_i , compute the failure ratio $\hat{\theta}(r_i)$
- Given $\hat{\theta}(r_i)$, compute optimal values of b_k and K in for ZO-HEM, or a_k , b_k and K for FO-HEM, so that the error function $\sum_{i=1}^m w_i [\log \hat{\theta}(r_i) - \log \theta(r_i)]^2$ is minimized, where w_i is a weight that puts more emphasis on more reliable data
- Compute the failure probability using CDF of standard normal distribution or numerical integration

Example 1: Series system reliability in highdimension

$$G_1(\mathbf{u}) = \beta_1 \sqrt{n} - \sum_{i=1}^n \mathbf{u}_i , G_2(\mathbf{u}) = \beta_2 \sqrt{n} + \sum_{i=1}^n \mathbf{u}_i$$

System failure domain: $G_1(u) \le 0 \cup G_2(u) \le 0$

β_0	ZO-HEM			FO-HEM			Exact
	β	C.O.V	Error (%)	β	C.O.V	Error (%)	β
3.0	2.784	0.051	0.07	2.800	0.053	0.65	2.782
3.5	3.328	0.022	0.51	3.338	0.058	0.82	3.311
4.0	3.820	0.019	-0.33	3.846	0.043	0.33	3.833
4.5	4.366	0.009	0.36	4.381	0.025	0.71	4.350
5.0	4.906	0.052	0.86	4.894	0.051	0.59	4.865

Example 1: Series system reliability in highdimension

 $\theta(r)$ versus *r* curves for $\beta_0 = 5.0$

Example 2: Nonlinear random vibration analysis of SDOF system

SDOF Bouc-Wen oscillator subjected to white noise

Thres hold (m)	ZO-HEM			FO-HEM			Exact
	β	C.O.V	Error (%)	β	C.O.V	Error (%)	β
0.08	2.480	0.025	-2.95	2.518	0.043	-1.48	2.556
0.09	2.953	0.035	-2.72	2.971	0.048	-2.13	3.036
0.10	3.401	0.031	-3.92	3.475	0.037	-1.84	3.540

Example 2: Nonlinear random vibration analysis of SDOF system

 $\theta(r)$ versus r curves for 0.10 (m) threshold

Contents

Future research

•

[Possibilities] Integration with Hamiltonian Monte Carlo based subset simulation

Wang Z, Broccardo M, Song J. Hamiltonian Monte Carlo Methods for Subset Simulation in Reliability Analysis. arXiv:1706.01435

Summary

٠

٠

- **[Summary 1]** A hyper-spherical formulation to perform reliability analysis in high dimensional Gaussian space is proposed.
- **[Summary 2]** An importance sampling method using the hyper-spherical formulation in conjunction with von Mises-Fisher mixture distribution is proposed.
- **[Summary 3]** An extrapolation method using the the hyper-spherical formulation is proposed.

Wang, Z., and Song J.(2016). Cross-entropy-based adaptive importance sampling using von Mises–Fisher mixture for high dimensional reliability analysis. *Structural Safety*. 59: 42-52.

Wang, Z., and Song J. (2018). Hyper-spherical extrapolation method (HEM) for general high dimensional reliability problems. Structural Safety, 72: 65–73.

ICASP13 Seoul National University 2019 http://www.icasp13.snu.ac.kr

http://systemreliability.wordpress.com junhosong@snu.ac.kr

Convergence Research Center for **Disaster-Hazard Resilience**